Abstract
Experiments were conducted to study the effect of the size of micro-pin-fin on the boiling heat transfer from a silicon chip immersed in a pool of degassed or gas-dissolved FC-72. Four kinds of micro-pin-fins with the dimensions of 10×10×60 to 50×50×60 μm3 (width×thickness×height) were fabricated on the surface of a square silicon chip with the dimensions of 10 × 10 × 0.5 mm3 by use of the dry etching technique. Experiments were conducted at the liquid subcoolings ΔTsub of 0, 3, 25 and 45 K under the atmospheric condition. The results were compared with those for a smooth chip and previously developed enhanced surfaces. The micro-pin-finned chips showed a considerable heat transfer enhancement as compared to a smooth chip in the nucleate boiling region. The boiling curve showed a steep increase in the heat flux with increasing wall superheat. For the micro-pin-finned chips, the critical heat flux was 1.9 to 2.3 times as large as that for the smooth chip and the wall temperature at the critical-heat-flux point was less than the upper limit for the reliable operation of LSI chips (=85°C). While the wall superheat at boiling incipience was strongly dependent on the dissolved gas content, it was little affected by the liquid subcooling.
Original language | English |
---|---|
Pages (from-to) | 2327-2332 |
Number of pages | 6 |
Journal | Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B |
Volume | 68 |
Issue number | 672 |
DOIs | |
Publication status | Published - Aug 2002 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Mechanical Engineering