TY - JOUR
T1 - Effect of pancreastatin on cerulein-stimulated pancreatic blood flow and exocrine secretion in anaesthetized rats
AU - Migita, Yoshikatsu
AU - Nakano, Itsuro
AU - Goto, Masayoshi
AU - Ito, Tetsuhide
AU - Nawata, Hajime
PY - 1999
Y1 - 1999
N2 - Background: Pancreastatin (PST) is an inhibitor of pancreatic exocrine secretion in vivo but not in vitro, which suggests that the inhibitory effect of PST is indirect, that is, not mediated by a specific receptor on pancreatic acinar cells. In this study, we investigated the effects of PST on pancreatic exocrine secretion and local pancreatic blood flow in anaesthetized rats to elucidate the participation of PST in indirect regulation of pancreatic exocrine function through blood supply. Methods: Pancreastatin (100, 200 or 500 pmol/kg per h) was administered intravenously under background infusion of cerulein (0.5 μg/kg per h), a cholecystokinin analogue. Pancreatic exocrine secretion was monitored by volume and protein output of the pancreatic juice and local pancreatic blood flow was measured by the hydrogen gas clearance method. Results: Pancreastatin significantly reduced cerulein-induced local pancreatic blood flow in a dose-dependent manner. Pancreatic exocrine secretion was also reduced significantly by PST dose-dependently. Pancreastatin did not change systemic blood pressure. These results suggested that the reduction of pancreatic blood flow is associated with the reduction of pancreatic exocrine secretion. Conclusions: We conclude that the mechanism of PST-induced inhibition of pancreatic exocrine secretion is, at least, partly mediated by the reduction of local pancreatic blood flow through blockade, caused by the action of cerulein on pancreatic blood flow.
AB - Background: Pancreastatin (PST) is an inhibitor of pancreatic exocrine secretion in vivo but not in vitro, which suggests that the inhibitory effect of PST is indirect, that is, not mediated by a specific receptor on pancreatic acinar cells. In this study, we investigated the effects of PST on pancreatic exocrine secretion and local pancreatic blood flow in anaesthetized rats to elucidate the participation of PST in indirect regulation of pancreatic exocrine function through blood supply. Methods: Pancreastatin (100, 200 or 500 pmol/kg per h) was administered intravenously under background infusion of cerulein (0.5 μg/kg per h), a cholecystokinin analogue. Pancreatic exocrine secretion was monitored by volume and protein output of the pancreatic juice and local pancreatic blood flow was measured by the hydrogen gas clearance method. Results: Pancreastatin significantly reduced cerulein-induced local pancreatic blood flow in a dose-dependent manner. Pancreatic exocrine secretion was also reduced significantly by PST dose-dependently. Pancreastatin did not change systemic blood pressure. These results suggested that the reduction of pancreatic blood flow is associated with the reduction of pancreatic exocrine secretion. Conclusions: We conclude that the mechanism of PST-induced inhibition of pancreatic exocrine secretion is, at least, partly mediated by the reduction of local pancreatic blood flow through blockade, caused by the action of cerulein on pancreatic blood flow.
UR - http://www.scopus.com/inward/record.url?scp=0033009756&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033009756&partnerID=8YFLogxK
U2 - 10.1046/j.1440-1746.1999.01918.x
DO - 10.1046/j.1440-1746.1999.01918.x
M3 - Article
C2 - 10385069
AN - SCOPUS:0033009756
SN - 0815-9319
VL - 14
SP - 583
EP - 587
JO - Journal of Gastroenterology and Hepatology (Australia)
JF - Journal of Gastroenterology and Hepatology (Australia)
IS - 6
ER -