TY - JOUR
T1 - Effect of Mo on softening behavior during annealing in cold-rolled high Mn austenitic stainless steels
AU - Hirata, Shigeru
AU - Ito, Takanori
AU - Mitsuhara, Masatoshi
AU - Nishida, Minoru
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2014
Y1 - 2014
N2 - The effect of molybdenum (Mo) on softening behavior of cold-rolled high manganese austenitic stainless steels was investigated. The high temperature hardness of cold-rolled Mo-free steel was drastically decreased by prolonged annealing at 873 K. On the other hand, there is not remarkable degradation of high temperature hardness in the steels containing more than 1 mass% Mo. Fully recrystallized structure is observed in Mo-free steel after annealing at 873 K for 1440 ks. Since deformation structures were not disappeared in the steels containing more than 1 mass% Mo even after annealing, the addition of Mo retarded the recrystallization in the work-hardening steels. After annealing, fine particles of M23C6 type carbide precipitated at the grain boundaries in the steel containing Mo. The amount of Mo in M 23C6 carbides was increased with increasing Mo content. On the other hand, the size of these carbides slightly decreased with increasing Mo content. These fine carbides strongly prevented the grain boundary movement (migration), therefore recrystallizaiton in the work-hardening steels was retarded. Moreover, the growth of M23C6 carbides at the grain boundary was consistent with Ostwald ripening equation substituted Mo for Cr. This result suggested that the growth rate of M23C6 was controlled by the diffusion of Mo.
AB - The effect of molybdenum (Mo) on softening behavior of cold-rolled high manganese austenitic stainless steels was investigated. The high temperature hardness of cold-rolled Mo-free steel was drastically decreased by prolonged annealing at 873 K. On the other hand, there is not remarkable degradation of high temperature hardness in the steels containing more than 1 mass% Mo. Fully recrystallized structure is observed in Mo-free steel after annealing at 873 K for 1440 ks. Since deformation structures were not disappeared in the steels containing more than 1 mass% Mo even after annealing, the addition of Mo retarded the recrystallization in the work-hardening steels. After annealing, fine particles of M23C6 type carbide precipitated at the grain boundaries in the steel containing Mo. The amount of Mo in M 23C6 carbides was increased with increasing Mo content. On the other hand, the size of these carbides slightly decreased with increasing Mo content. These fine carbides strongly prevented the grain boundary movement (migration), therefore recrystallizaiton in the work-hardening steels was retarded. Moreover, the growth of M23C6 carbides at the grain boundary was consistent with Ostwald ripening equation substituted Mo for Cr. This result suggested that the growth rate of M23C6 was controlled by the diffusion of Mo.
UR - http://www.scopus.com/inward/record.url?scp=84896780637&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84896780637&partnerID=8YFLogxK
U2 - 10.2355/tetsutohagane.100.406
DO - 10.2355/tetsutohagane.100.406
M3 - Article
AN - SCOPUS:84896780637
SN - 0021-1575
VL - 100
SP - 406
EP - 413
JO - Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
JF - Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
IS - 3
ER -