TY - JOUR
T1 - Effect of Mo on γ to α transformation and precipitation behavior in B-added steel
AU - Fujishiro, Taishi
AU - Hara, Takuya
AU - Shigesato, Genichi
N1 - Publisher Copyright:
© 2015, Iron and Steel Institute of Japan. All rights reserved.
PY - 2015
Y1 - 2015
N2 - Effect of the combined addition of molybdenum (Mo) and boron (B) on austenite (γ) to ferrite (α) transformation and precipitation behavior were investigated using low-alloy steels. B-added steel and Mo-B combined steel were held at 923 K (γ region) in order to precipitate boride. B content as precipitates increased and γ to α transformation was promoted with holding time at 923 K. In B-added steel, both M23(C,B)6 and M2B were observed. The transition from M23(C,B)6 to M2B caused by the increase in holding time at 923 K. By contrast, in Mo-B combined steel, no M2B was observed regardless of the holding time. Mo addition suppresses not only the M23(C,B)6 formation but also the M2B formation. M2B contains larger amounts of B than M23(C,B)6. B content as precipitates in Mo-B combined steel was much lower than that in B-added steel due to the suppression of M2B precipitates. The effect of Mo for B containing steel suppresses the precipitation of M23(C,B)6 and M2B and increases more segregated B in austenite grain boundary that contributes to γ to α transformation.
AB - Effect of the combined addition of molybdenum (Mo) and boron (B) on austenite (γ) to ferrite (α) transformation and precipitation behavior were investigated using low-alloy steels. B-added steel and Mo-B combined steel were held at 923 K (γ region) in order to precipitate boride. B content as precipitates increased and γ to α transformation was promoted with holding time at 923 K. In B-added steel, both M23(C,B)6 and M2B were observed. The transition from M23(C,B)6 to M2B caused by the increase in holding time at 923 K. By contrast, in Mo-B combined steel, no M2B was observed regardless of the holding time. Mo addition suppresses not only the M23(C,B)6 formation but also the M2B formation. M2B contains larger amounts of B than M23(C,B)6. B content as precipitates in Mo-B combined steel was much lower than that in B-added steel due to the suppression of M2B precipitates. The effect of Mo for B containing steel suppresses the precipitation of M23(C,B)6 and M2B and increases more segregated B in austenite grain boundary that contributes to γ to α transformation.
UR - http://www.scopus.com/inward/record.url?scp=84928945033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928945033&partnerID=8YFLogxK
U2 - 10.2355/tetsutohagane.101.300
DO - 10.2355/tetsutohagane.101.300
M3 - Article
AN - SCOPUS:84928945033
SN - 0021-1575
VL - 101
SP - 300
EP - 307
JO - Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
JF - Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
IS - 5
ER -