Effect of local chain dynamics on a bioinert interface

Toyoaki Hirata, Hisao Matsuno, Daisuke Kawaguchi, Tomoyasu Hirai, Norifumi L. Yamada, Masaru Tanaka, Keiji Tanaka

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)


Although many kinds of synthetic polymers have been investigated to construct blood-compatible materials, only a few have achieved success. To establish molecular designs for blood-compatible polymers, the chain structure and dynamics at the water interface must be understood using solid evidence as the first bench mark. Here we show that polymer dynamics at the water interface impacts on structure of the interfacial water, resulting in a change in protein adsorption and of platelet adhesion. As a particular material, a blend composed of poly(2-methoxyethyl acrylate) (PMEA) and poly(methyl methacrylate) was used. PMEA was segregated to the water interface. While the local conformation of PMEA at the water interface was insensitive to its molecular weight, the local dynamics became faster with decreasing molecular weight, resulting in a disturbance of the network structure of waters at the interface. This leads to the extreme suppression of protein adsorption and platelet adhesion.

Original languageEnglish
Pages (from-to)3661-3667
Number of pages7
Issue number12
Publication statusPublished - Mar 31 2015

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry


Dive into the research topics of 'Effect of local chain dynamics on a bioinert interface'. Together they form a unique fingerprint.

Cite this