TY - GEN
T1 - Effect of kerosene on bubble interaction with molybdenite and chalcopyrite in MgCl2 solution
AU - Wisnu Suyantara, Gde Pandhe
AU - Hirajima, Tsuyoshi
AU - Elmahdy, A. M.
AU - Miki, Hajime
AU - Sasaki, Keiko
N1 - Funding Information:
The authors would like to acknowledge a Grant-in-Aid for Science Research (JSPS KAKENHI Grant No. 15H02333) from Japan Society for the Promotion of Science (JSPS), and Sumitomo Metal Mining Co., Ltd., Japan and the Ministry of Education, Culture, Sports, Science and Technology (MEXT).
Publisher Copyright:
© 2016 TAPPI Press. All rights reserved.
PY - 2016
Y1 - 2016
N2 - Seawater has been reported to depress molybdenite in a copper-molybdenum (Cu-Mo) flotation process at high pH due to the precipitation of Mg(OH)2. Meanwhile, to improve mineral recoveries, collectors are usually added into the flotation cells, thus adding the complexity to the mechanism of bubble-particle interactions involved in Cu-Mo flotation. Therefore, understanding the interaction mechanism in seawater flotation and in the presence of collectors is important to explain the minerals depression. The present work investigated the effect of kerosene on the bubble collision and attachment to pure chalcopyrite and molybdenite surfaces in MgCl2 solution as one of the seawater major components at pH 6 and 11. Mineral surfaces were characterized using atomic force microscopy (AFM). In addition, minerals floatability in the same system were tested in a column flotation. The study of bubble-particle interactions shows that following several collisions, bubble could displace the intervening liquid layer on the mineral surfaces, forming a three-phase contact (TPC). A TPC formed more rapidly in the presence of emulsified kerosene in a 0.01 M MgCl2 solution at pH 6 for both minerals. The reason is kerosene increased the surfaces hydrophobicity and destabilized the intervening liquid layer on the surfaces. Moreover, the average time required to form a TPC was shorter on molybdenite surface. This can be attributed to the effect of adsorbed kerosene on molybdenite surface and molybdenite surface roughness.
AB - Seawater has been reported to depress molybdenite in a copper-molybdenum (Cu-Mo) flotation process at high pH due to the precipitation of Mg(OH)2. Meanwhile, to improve mineral recoveries, collectors are usually added into the flotation cells, thus adding the complexity to the mechanism of bubble-particle interactions involved in Cu-Mo flotation. Therefore, understanding the interaction mechanism in seawater flotation and in the presence of collectors is important to explain the minerals depression. The present work investigated the effect of kerosene on the bubble collision and attachment to pure chalcopyrite and molybdenite surfaces in MgCl2 solution as one of the seawater major components at pH 6 and 11. Mineral surfaces were characterized using atomic force microscopy (AFM). In addition, minerals floatability in the same system were tested in a column flotation. The study of bubble-particle interactions shows that following several collisions, bubble could displace the intervening liquid layer on the mineral surfaces, forming a three-phase contact (TPC). A TPC formed more rapidly in the presence of emulsified kerosene in a 0.01 M MgCl2 solution at pH 6 for both minerals. The reason is kerosene increased the surfaces hydrophobicity and destabilized the intervening liquid layer on the surfaces. Moreover, the average time required to form a TPC was shorter on molybdenite surface. This can be attributed to the effect of adsorbed kerosene on molybdenite surface and molybdenite surface roughness.
UR - http://www.scopus.com/inward/record.url?scp=85048321228&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048321228&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85048321228
T3 - IMPC 2016 - 28th International Mineral Processing Congress
BT - IMPC 2016 - 28th International Mineral Processing Congress
PB - Canadian Institute of Mining, Metallurgy and Petroleum
T2 - 28th International Mineral Processing Congress, IMPC 2016
Y2 - 11 September 2016 through 15 September 2016
ER -