Effect of irreversible electroporation on three-dimensional cell culture model

Kosaku Kurata, Masahiro Matsushita, Takashi Yoshii, Takanobu Fukunaga, Hiroshi Takamatsu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Irreversible electroporation (IRE) is a new treatment to necrotize abnormal cells by high electric pulses. Electric potential difference over 1 V across the plasma membrane permanently permeabilizes the cell with keeping the extracellular matrix intact if the thermal damage due to the Joule heating effect is avoided. This is the largest advantage of the IRE compared to the other conventional treatment. However, since the IRE has just started to be used in clinical tests, it is important to predict the necrotized region that depends on pulse parameters and electrode arrangement. We therefore examined the numerical solution to the Laplace equation for the static electric field to predict the IRE-induced cell necrosis. Three-dimensionally (3-D) cultured cells in a tissue phantom were experimentally subjected to the electric pulses through a pair of puncture electrodes. The necrotized area was determined as a function of the pulse repetition and compared with the area that was estimated by the numerical analysis.

Original languageEnglish
Title of host publication2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2012
Pages179-182
Number of pages4
DOIs
Publication statusPublished - 2012
Event34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012 - San Diego, CA, United States
Duration: Aug 28 2012Sept 1 2012

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2012
Country/TerritoryUnited States
CitySan Diego, CA
Period8/28/129/1/12

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Effect of irreversible electroporation on three-dimensional cell culture model'. Together they form a unique fingerprint.

Cite this