Effect of dislocation distribution on the yielding of highly dislocated iron

S. Takaki, Y. Fujimura, K. Nakashima, Toshihiro Tsuchiyma

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    10 Citations (Scopus)

    Abstract

    Yield strength of highly dislocated metals is known to be directly proportional to the square root of dislocation density (p), so called Bailey-Hirsch relationship. In general, the microstructure of heavily cold worked iron is characterized by cellar tangled dislocations. On the other hand, the dislocation substructure of martensite is characterized by randomly distributed dislocations although it has almost same or higher dislocation density in comparison with heavily cold worked iron. In this paper, yielding behavior of ultra low carbon martensite (Fe-18%Ni alloy) was discussed in connection with microstructural change during cold working. Originally, the elastic proportional limit and 0.2% proof stress is low in as-quenched martensite in spite of its high dislocation density. Small amount of cold rolling results in the decrease of dislocation density from 6.8×10 15/m-2 to 3.4×1015/m-2 but both the elastic proportional limit and 0.2% proof stress are markedly increased by contraries. 0.2% proof stress of cold-rolled martensite could be plotted on the extended line of the Bailey-Hirsch equation obtained in cold-rolled iron. It was also confirmed that small amount of cold rolling causes a clear microstructural change from randomly distributed dislocations to cellar tangled dislocations. Martensite contains two types of dislocations; statistically stored dislocation (SS-dislocation) and geometrically necessary dislocation (GN-dislocation). In the early deformation stage, SS-dislocations easily disappear through the dislocation interaction and movement to grain boundaries or surface. This process produces a plastic strain and lowers the elastic proportional limit and 0.2% proof stress in the ultra low carbon martensite.

    Original languageEnglish
    Title of host publicationSupplement to THERMEC 2006, 5th International Conference on PROCESSING and MANUFACTURING OF ADVANCED MATERIALS, THERMEC 2006
    Pages228-233
    Number of pages6
    Volume539-543
    EditionPART 1
    Publication statusPublished - 2007
    Event5th International Conference on Processing and Manufacturing of Advanced Materials - THERMEC'2006 - Vancouver, Canada
    Duration: Jul 4 2006Jul 8 2006

    Publication series

    NameMaterials Science Forum
    NumberPART 1
    Volume539-543
    ISSN (Print)02555476

    Other

    Other5th International Conference on Processing and Manufacturing of Advanced Materials - THERMEC'2006
    Country/TerritoryCanada
    CityVancouver
    Period7/4/067/8/06

    All Science Journal Classification (ASJC) codes

    • Materials Science(all)
    • Condensed Matter Physics
    • Mechanics of Materials
    • Mechanical Engineering

    Fingerprint

    Dive into the research topics of 'Effect of dislocation distribution on the yielding of highly dislocated iron'. Together they form a unique fingerprint.

    Cite this