TY - JOUR
T1 - Effect of differences in pixel size on image characteristics of digital intraoral radiographic systems
T2 - A physical and visual evaluation
AU - Kuramoto, Taku
AU - Takarabe, Shinya
AU - Okamura, Kazutoshi
AU - Shiotsuki, Kenshi
AU - Shibayama, Yusuke
AU - Tsuru, Hiroki
AU - Akamine, Hiroshi
AU - Tatsumi, Masato
AU - Kato, Toyoyuki
AU - Morishita, Junji
AU - Yoshiura, Kazunori
N1 - Publisher Copyright:
© 2020 The Authors.
PY - 2020
Y1 - 2020
N2 - Objectives: To quantify and validate the effect of pixel size on a digital intraoral radiographic system according to International Electrotechnical Commission standards through physical and visual evaluations. Methods: The digital intraoral radiographic system used was the photostimulable phosphor imaging plate and scanner system. The system had three image capture modes: high-speed (HS), high-resolution (HR), and super high-resolution (SHR) with different pixels. The physical characteristics of the system were evaluated using presampled modulation transfer function (MTF) and the normalized noise power spectrum (NNPS). An aluminum (Al) step phantom with different depths of holes was used to acquire images under various exposure conditions. The average number of perceptible holes from all steps was plotted against each exposure dose. The results were compared to analyze the effects of pixel size on image quality of intraoral radiographs. Results: The MTF was slightly higher with SHR than with HR and HS. The NNPS with SHR showed about a 40% decrease in magnitude compared to HS. The total number of perceptible holes in the Al step phantom was higher with SHR than with HS and HR in all exposure conditions. conclusions: The MTF and NNPS obtained with different pixel size could be quantified by physical evaluation, and the differences were visually validated with Al step phantom. The SHR mode has the potential to decrease the radiation dose without compromising the image quality.
AB - Objectives: To quantify and validate the effect of pixel size on a digital intraoral radiographic system according to International Electrotechnical Commission standards through physical and visual evaluations. Methods: The digital intraoral radiographic system used was the photostimulable phosphor imaging plate and scanner system. The system had three image capture modes: high-speed (HS), high-resolution (HR), and super high-resolution (SHR) with different pixels. The physical characteristics of the system were evaluated using presampled modulation transfer function (MTF) and the normalized noise power spectrum (NNPS). An aluminum (Al) step phantom with different depths of holes was used to acquire images under various exposure conditions. The average number of perceptible holes from all steps was plotted against each exposure dose. The results were compared to analyze the effects of pixel size on image quality of intraoral radiographs. Results: The MTF was slightly higher with SHR than with HR and HS. The NNPS with SHR showed about a 40% decrease in magnitude compared to HS. The total number of perceptible holes in the Al step phantom was higher with SHR than with HS and HR in all exposure conditions. conclusions: The MTF and NNPS obtained with different pixel size could be quantified by physical evaluation, and the differences were visually validated with Al step phantom. The SHR mode has the potential to decrease the radiation dose without compromising the image quality.
UR - http://www.scopus.com/inward/record.url?scp=85089786918&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089786918&partnerID=8YFLogxK
U2 - 10.1259/DMFR.20190378
DO - 10.1259/DMFR.20190378
M3 - Article
C2 - 32302229
AN - SCOPUS:85089786918
SN - 0250-832X
VL - 49
JO - Dentomaxillofacial Radiology
JF - Dentomaxillofacial Radiology
IS - 6
M1 - 20190378
ER -