Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer

Shuhei Nozaki, Tomoyasu Hirai, Yuji Higaki, Kohji Yoshinaga, Ken Kojio, Atsushi Takahara

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)

Abstract

Polyurethane elastomers (PUEs) based on poly(2-ethyl-1,3-hexamethylene adipate) glycol (PEHA), poly(2,4-diethyl-1,5-pentamethylene adipate) glycol (PDEPA) and poly(2-butyl-2-ethyl-1,3-trimethylene adipate) glycol (PBETA) were synthesized with 4,4’-diphenylmethane diisocyanate (MDI) and 1,4-butane diol (BD)/1,1,1-trimethylol propane (TMP). PEHA has one primary and one secondary hydroxyl groups, but PDEPA or PBETA has two primary hydroxyl groups. The effect of low reactive secondary OH group on molecular aggregation structure and mechanical properties of the PUEs was investigated using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), dynamic viscoelastic measurement and tensile testing. The study demonstrates that PEHA-based PUE has lower cross-linking density and lower degree of microphase separation than PDEPA- and PBETA-based PUEs. As a result, PEHA-based PUE has lower dynamic storage modulus value at the rubbery plateau region and Young's modulus.

Original languageEnglish
Pages (from-to)423-428
Number of pages6
Journalpolymer
Volume116
DOIs
Publication statusPublished - May 5 2017

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer'. Together they form a unique fingerprint.

Cite this