Dynamics evaluation of hydrogen isotope behavior in tungsten simulating damage distribution

Moeko Nakata, Keisuke Azuma, Akihiro Togari, Qilai Zhou, Mingzhong Zhao, Takeshi Toyama, Yuji Hatano, Naoaki Yoshida, Hideo Watanabe, Masashi Shimada, Dean Buchenauer, Yasuhisa Oya

Research output: Contribution to journalArticlepeer-review


0.8 MeV and 6 MeV iron (Fe) ions were implanted into tungsten (W) to produce the irradiation damages with the various damage distributions. Thereafter, 1.0 keV deuterium ion (D2 +) implantation was performed to evaluate the D retention behavior on damage distribution in W. The experimental results showed that the total D retentions were decreased by increasing the damage concentration introduced near the surface region by 0.8 MeV Fe ion implantation. The retention of D trapped by vacancy clusters and voids, which would be the stable trapping sites with higher trapping energies, were reduced, suggesting that the recombination of D atom into D2 on the W surface was enhanced due to D accumulation near the surface region. It can be said that the hydrogen retention behavior in PFMs will be controlled by the damage distribution near the surface.

Original languageEnglish
Pages (from-to)2096-2099
Number of pages4
JournalFusion Engineering and Design
Publication statusPublished - Sept 2019

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Mechanical Engineering


Dive into the research topics of 'Dynamics evaluation of hydrogen isotope behavior in tungsten simulating damage distribution'. Together they form a unique fingerprint.

Cite this