TY - GEN
T1 - Dynamic force/torque equilibrium for stable grasping by a triple robotic fingers system
AU - Tahara, Kenji
AU - Arimoto, Suguru
AU - Yoshida, Morio
PY - 2009/12/11
Y1 - 2009/12/11
N2 - This paper proposes a stable object grasping method to realize dynamic force/torque equilibrium by using a triple robotic fingers system with soft and deformable hemispherical fingertips. In the authors' previous works, "Blind Grasping" control scheme, which realizes stable object grasping without use of any external sensing such as vision, force, or tactile sensing in the case of using a pair of robot fingers, has been proposed. This control methodology is based on a unique configuration of human hand, called "Fingers-Thumb Opposability". In this paper, a ternary finger in addition to a pair of fingers is introduced not only to expand a stable region of grasping, but also to enhance dexterity and versatility of the multi-fingered robotic hand system. To this end, a "Blind Grasping" manner is modified in order to install it in the triple fingers system. First, dynamics of the triple robotic fingers system and a grasped object with considering rolling constraints is modeled, and a control input based on the blind grasping manner is designed. Next, the closed-loop dynamics is derived and a stability analysis is shown briefly. Finally, its usefulness is discussed through numerical simulation results.
AB - This paper proposes a stable object grasping method to realize dynamic force/torque equilibrium by using a triple robotic fingers system with soft and deformable hemispherical fingertips. In the authors' previous works, "Blind Grasping" control scheme, which realizes stable object grasping without use of any external sensing such as vision, force, or tactile sensing in the case of using a pair of robot fingers, has been proposed. This control methodology is based on a unique configuration of human hand, called "Fingers-Thumb Opposability". In this paper, a ternary finger in addition to a pair of fingers is introduced not only to expand a stable region of grasping, but also to enhance dexterity and versatility of the multi-fingered robotic hand system. To this end, a "Blind Grasping" manner is modified in order to install it in the triple fingers system. First, dynamics of the triple robotic fingers system and a grasped object with considering rolling constraints is modeled, and a control input based on the blind grasping manner is designed. Next, the closed-loop dynamics is derived and a stability analysis is shown briefly. Finally, its usefulness is discussed through numerical simulation results.
UR - http://www.scopus.com/inward/record.url?scp=76249093251&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=76249093251&partnerID=8YFLogxK
U2 - 10.1109/IROS.2009.5354563
DO - 10.1109/IROS.2009.5354563
M3 - Conference contribution
AN - SCOPUS:76249093251
SN - 9781424438044
T3 - 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
SP - 2257
EP - 2263
BT - 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
T2 - 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Y2 - 11 October 2009 through 15 October 2009
ER -