TY - JOUR
T1 - Diclofenac, a non-steroidal anti-inflammatory drug, suppresses apoptosis induced by endoplasmic reticulum stresses by inhibiting caspase signaling
AU - Yamazaki, Takao
AU - Muramoto, Masakazu
AU - Oe, Tomoya
AU - Morikawa, Noriyuki
AU - Okitsu, Osamu
AU - Nagashima, Takeyuki
AU - Nishimura, Shintaro
AU - Katayama, Yoshiki
AU - Kita, Yasuhiro
PY - 2006/4
Y1 - 2006/4
N2 - Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used in the treatment of inflammation and pain. In many reports, NSAIDs have induced apoptosis in a variety of cell lines such as colon cancer cells. On the other hand, more recently a few reports have found that NSAIDs protect against apoptosis. Here we investigate endoplasmic reticulum (ER)-stress-induced apoptosis of neuronal cells. The aim of this study is to examine the involvement of NSAIDs, in particular diclofenac, on ER-stress-induced apoptosis of human neuroblastoma SH-SY5Y cells. Diclofenac significantly suppressed SH-SY5Y cell death induced by two types of ER-stress-inducing agents: thapsigargin, an inhibitor of Ca2+-ATPase on the endoplasmic reticulum membrane, and tunicamycin, a glycosylation blocker. Other NSAIDs, such as indomethacin, ibuprofen, aspirin, and ketoprofen, also suppressed ER-stress-induced SH-SY5Y cell death. The dose-dependent anti-apoptotic effect of diclofenac did not correlate with the reduction of prostaglandin release. Administration of prostaglandin E2, which was a primary product of arachidonic metabolism, showed no effects against anti-apoptotic effects produced by diclofenac. Thapsigargin and tunicamycin each significantly activated caspase-3, -9, and -2 in the intrinsic apoptotic pathway in SH-SY5Y cells. Diclofenac suppressed the activation of caspases induced by both ER stresses. Thapsigargin and tunicamycin decreased the mitochondrial membrane potential in SH-SY5Y cells. Diclofenac suppressed the mitochondrial depolarization induced by both ER stresses. Diclofenac inhibited ER-stress-induced apoptosis of SH-SY5Y cells by suppressing the activation of caspases in the intrinsic apoptotic pathway. This is the first report to find that diclofenac has protective effects against ER-stress-induced apoptosis.
AB - Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently used in the treatment of inflammation and pain. In many reports, NSAIDs have induced apoptosis in a variety of cell lines such as colon cancer cells. On the other hand, more recently a few reports have found that NSAIDs protect against apoptosis. Here we investigate endoplasmic reticulum (ER)-stress-induced apoptosis of neuronal cells. The aim of this study is to examine the involvement of NSAIDs, in particular diclofenac, on ER-stress-induced apoptosis of human neuroblastoma SH-SY5Y cells. Diclofenac significantly suppressed SH-SY5Y cell death induced by two types of ER-stress-inducing agents: thapsigargin, an inhibitor of Ca2+-ATPase on the endoplasmic reticulum membrane, and tunicamycin, a glycosylation blocker. Other NSAIDs, such as indomethacin, ibuprofen, aspirin, and ketoprofen, also suppressed ER-stress-induced SH-SY5Y cell death. The dose-dependent anti-apoptotic effect of diclofenac did not correlate with the reduction of prostaglandin release. Administration of prostaglandin E2, which was a primary product of arachidonic metabolism, showed no effects against anti-apoptotic effects produced by diclofenac. Thapsigargin and tunicamycin each significantly activated caspase-3, -9, and -2 in the intrinsic apoptotic pathway in SH-SY5Y cells. Diclofenac suppressed the activation of caspases induced by both ER stresses. Thapsigargin and tunicamycin decreased the mitochondrial membrane potential in SH-SY5Y cells. Diclofenac suppressed the mitochondrial depolarization induced by both ER stresses. Diclofenac inhibited ER-stress-induced apoptosis of SH-SY5Y cells by suppressing the activation of caspases in the intrinsic apoptotic pathway. This is the first report to find that diclofenac has protective effects against ER-stress-induced apoptosis.
UR - http://www.scopus.com/inward/record.url?scp=33645216351&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33645216351&partnerID=8YFLogxK
U2 - 10.1016/j.neuropharm.2005.10.016
DO - 10.1016/j.neuropharm.2005.10.016
M3 - Article
C2 - 16388830
AN - SCOPUS:33645216351
SN - 0028-3908
VL - 50
SP - 558
EP - 567
JO - Neuropharmacology
JF - Neuropharmacology
IS - 5
ER -