TY - GEN
T1 - Development of the needle insertion robot for Percutaneous Vertebroplasty
AU - Onogi, S.
AU - Morimoto, K.
AU - Sakuma, I.
AU - Nakajima, Y.
AU - Koyama, T.
AU - Sugano, N.
AU - Tamura, Y.
AU - Yonenobu, S.
AU - Momoi, Y.
PY - 2005
Y1 - 2005
N2 - Percutaneous Vertebroplasty (PVP) is an effective and less invasive medical treatment for vertebral osteoporotic compression fractures. However, this operative procedure is quite difficult because an arcus vertebra, which is narrow, is needled with accuracy, and an operator's hand is exposed to X-ray continuously. We have developed a needle insertion robot for Percutaneous Vertebroplasty. Its experimental evaluation on the basic performance of the system and needle insertion accuracy are presented. A needle insertion robot is developed for PVP. This robot can puncture with accuracy and an operator does not need to be exposed to X-ray. The mechanism of the robot is compact in size (350 mm × D 400 mm × H270 mm, weight: 15 kg) so that the robot system can be inserted in the space between C-arm and the patient on the operating table. The robot system is controlled by the surgical navigation system where the appropriate needle trajectory is planned based on pre-operative three-dimensional CT images. The needle holding part of the robot is X-ray lucent so that the needle insertion process can be monitored by fluoroscopy. The position of the needle during insertion process can be continuously monitored. In vitro evaluation of the system showed that average position and orientation errors were less than 1.0 mm and 1.0 degree respectively. Experimental results showed that the safety mechanism called mechanical fuse released the needle holding disk properly when excessive force was applied to the needle. These experimental results demonstrated that the developed system has the satisfactory basic performance as needle insertion robot for PVP.
AB - Percutaneous Vertebroplasty (PVP) is an effective and less invasive medical treatment for vertebral osteoporotic compression fractures. However, this operative procedure is quite difficult because an arcus vertebra, which is narrow, is needled with accuracy, and an operator's hand is exposed to X-ray continuously. We have developed a needle insertion robot for Percutaneous Vertebroplasty. Its experimental evaluation on the basic performance of the system and needle insertion accuracy are presented. A needle insertion robot is developed for PVP. This robot can puncture with accuracy and an operator does not need to be exposed to X-ray. The mechanism of the robot is compact in size (350 mm × D 400 mm × H270 mm, weight: 15 kg) so that the robot system can be inserted in the space between C-arm and the patient on the operating table. The robot system is controlled by the surgical navigation system where the appropriate needle trajectory is planned based on pre-operative three-dimensional CT images. The needle holding part of the robot is X-ray lucent so that the needle insertion process can be monitored by fluoroscopy. The position of the needle during insertion process can be continuously monitored. In vitro evaluation of the system showed that average position and orientation errors were less than 1.0 mm and 1.0 degree respectively. Experimental results showed that the safety mechanism called mechanical fuse released the needle holding disk properly when excessive force was applied to the needle. These experimental results demonstrated that the developed system has the satisfactory basic performance as needle insertion robot for PVP.
UR - http://www.scopus.com/inward/record.url?scp=33744808297&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33744808297&partnerID=8YFLogxK
U2 - 10.1007/11566489_14
DO - 10.1007/11566489_14
M3 - Conference contribution
AN - SCOPUS:33744808297
SN - 3540293264
SN - 9783540293262
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 105
EP - 113
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005 - 8th International Conference, Proceedings
T2 - 8th International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005
Y2 - 26 October 2005 through 29 October 2005
ER -