Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues

Suguru Taniguchi, Noriko Watanabe, Takeru Nose, Iori Maeda

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X1P2G3V4G5) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials.

Original languageEnglish
Pages (from-to)36-42
Number of pages7
JournalJournal of Peptide Science
Volume22
Issue number1
DOIs
Publication statusPublished - Jan 1 2016

All Science Journal Classification (ASJC) codes

  • Structural Biology
  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Pharmacology
  • Drug Discovery
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues'. Together they form a unique fingerprint.

Cite this