Development of polymer-polymer type charge-transfer blend membranes for fuel cell application

Shiyan Feng, Shoichi Kondo, Takahiro Kaseyama, Taichi Nakazawa, Takamasa Kikuchi, Roman Selyanchyn, Shigenori Fujikawa, Liana Christiani, Kazunari Sasaki, Masamichi Nishihara

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

We have prepared new charge-transfer (CT) complex polymer blend membranes (CT membranes), for use as high performance polymer electrolyte membranes (PEMs); with a simple and easy preparation method for application in PEFCs. In this study, electron-accepting sulfonated polyimide (SPI) and electron-donating polyether (PE), were used to develop polymer-polymer type CT membranes. The formation of CT complex in the obtained SPI/PE membranes was confirmed by visible spectroscopy. The use of flexible spacers in the PE and heat treatment of the CT membranes, enhanced the CT complex formation. SPI/PE CT membranes showed 1.9–2.2 times higher mechanical strength than the original SPI, while SPI/PE 0.33 CT membrane with heat treatment at 130 °C for 2 h showed 4.3 times higher mechanical strength than the original SPI. Hydrogen permeability through SPI/PE CT membranes was 4.1–5.4 times lower than Nafion 212 and 1.4–1.9 times lower than the original SPI membrane. We have prepared a thin SPI/PE CT membrane (10 µm thickness), that showed comparable OCV (0.88 V), similar resistance compared to Nafion 212 and demonstrated more than 10 h of durability in a fuel cell test; suggesting that SPI/PE thin CT membrane can be applied for PEFC application.

Original languageEnglish
Pages (from-to)223-231
Number of pages9
JournalJournal of Membrane Science
Volume548
DOIs
Publication statusPublished - Feb 15 2018

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Materials Science(all)
  • Physical and Theoretical Chemistry
  • Filtration and Separation

Fingerprint

Dive into the research topics of 'Development of polymer-polymer type charge-transfer blend membranes for fuel cell application'. Together they form a unique fingerprint.

Cite this