TY - JOUR
T1 - Development of poly(amidoamine) dendrimer/ poly(ethylene glycol) hybrid membranes for CO2 capture at elevated pressures
AU - Duan, Shuhong
AU - Kai, Teruhiko
AU - Taniguchi, Ikuo
AU - Kazama, Shingo
N1 - Publisher Copyright:
© 2014 The Authors. Published by Elsevier Ltd.
PY - 2014
Y1 - 2014
N2 - To improve CO2 separation performance of Poly (amidoamine) (PAMAM) dendrimer at pressure difference conditions, hybrid membranes have been developed by immobilizing of PAMAM dendrimer into a cross-linked poly(ethylene glycol) dimethacrylate (PEGDMA) polymer matrix. A multifunctional cross-linker (MFX) such as trimethylolpropane trimethacrylate (TMPTMA) was used to enhance membrane separation performance at elevated pressures. The resulting hybrid membrane PAMAM dendrimer / PEGDMA/TMPTMA hybrid membrane exhibited an excellent CO2/H2 selectivity of 30 and above with CO2 permeance of 2.1×10-12m3(STP)/(m2 s Pa) at 660 kPa CO2 partial under 820 kPa feed pressure with 80% relative humidity at 40 °C. The PAMAM dendrimer/cross-linked PEG hybrid membrane shows great potential for CO2 separation from H2 in high pressure applications, such as IGCC process. A compatible crosslinker (CPC) was used to prepare the composite membrane with a thin selectivity layer to enhance CO2 permeance. An isopropyl alkyl hindered amine IAM, tertiary amine TA1 and TA2 were added to the formation solution of membrane for investigating the effect of additive on CO2 separation performance.
AB - To improve CO2 separation performance of Poly (amidoamine) (PAMAM) dendrimer at pressure difference conditions, hybrid membranes have been developed by immobilizing of PAMAM dendrimer into a cross-linked poly(ethylene glycol) dimethacrylate (PEGDMA) polymer matrix. A multifunctional cross-linker (MFX) such as trimethylolpropane trimethacrylate (TMPTMA) was used to enhance membrane separation performance at elevated pressures. The resulting hybrid membrane PAMAM dendrimer / PEGDMA/TMPTMA hybrid membrane exhibited an excellent CO2/H2 selectivity of 30 and above with CO2 permeance of 2.1×10-12m3(STP)/(m2 s Pa) at 660 kPa CO2 partial under 820 kPa feed pressure with 80% relative humidity at 40 °C. The PAMAM dendrimer/cross-linked PEG hybrid membrane shows great potential for CO2 separation from H2 in high pressure applications, such as IGCC process. A compatible crosslinker (CPC) was used to prepare the composite membrane with a thin selectivity layer to enhance CO2 permeance. An isopropyl alkyl hindered amine IAM, tertiary amine TA1 and TA2 were added to the formation solution of membrane for investigating the effect of additive on CO2 separation performance.
UR - http://www.scopus.com/inward/record.url?scp=84922849536&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84922849536&partnerID=8YFLogxK
U2 - 10.1016/j.egypro.2014.11.017
DO - 10.1016/j.egypro.2014.11.017
M3 - Conference article
AN - SCOPUS:84922849536
SN - 1876-6102
VL - 63
SP - 167
EP - 173
JO - Energy Procedia
JF - Energy Procedia
T2 - 12th International Conference on Greenhouse Gas Control Technologies, GHGT 2014
Y2 - 5 October 2014 through 9 October 2014
ER -