Development of inorganic-organic hybrid membranes for carbon dioxide/methane separation

Shunsuke Suzuki, Souha Belhaj Messaoud, Atsushi Takagaki, Takashi Sugawara, Ryuji Kikuchi, S. Ted Oyama

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)


Membrane separation processes are attractive for the removal of carbon dioxide from natural gas since they consume less energy than conventional methods such as amine absorption and pressure swing adsorption. In this work inorganic-organic hybrid membranes were prepared employing chemical vapor deposition (CVD) of tetraethylorthosilicate (TEOS) and 3-aminopropyltriethoxysilane (APTES) as silica and amino-silica precursors. They were deposited on the surface of a porous alumina support at high temperature using oxygen as a co-reagent. The objective was to enhance the permeance of CO2 by placing amine groups on the surface of the membrane. The APTES/(TEOS+APTES) ratio R was varied from 0% to 100% in order to find an optimum composition for the separation of the CO2 from CH4. The best membrane was found to have a ratio R of 20% with a CO2 permeance of 2.3×10-7molm-2s-1Pa-1 and an ideal CO2/CH4 selectivity of 40 at 393K and 0.10MPa of partial pressure difference.The transport mechanism for CO2 permeation was surface diffusion and for CH4 passage was gas-translation. The pore size of the membrane was evaluated by Tsuru[U+05F3]s method revealing a pore size of 0.44nm. The results are significant because the permeance level is above that necessary for commercial use, the selectivity is adequate to produce a pipeline quality natural gas (purity>2.4%), and the permeating gas is CO2 which allows retention of methane at high pressure.

Original languageEnglish
Pages (from-to)402-411
Number of pages10
JournalJournal of Membrane Science
Publication statusPublished - Dec 1 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • General Materials Science
  • Physical and Theoretical Chemistry
  • Filtration and Separation


Dive into the research topics of 'Development of inorganic-organic hybrid membranes for carbon dioxide/methane separation'. Together they form a unique fingerprint.

Cite this