TY - GEN
T1 - Development of cartilaginous tissue in chondrocyte-agarose construct cultured under traction loading
AU - Keisuke, Fukuda
AU - Seiji, Omata
AU - Yoshinori, Sawae
N1 - Publisher Copyright:
© Springer International Publishing Switzerland 2014.
PY - 2014
Y1 - 2014
N2 - In this study, chondrocytes isolated from bovine cartilage tissue were seeded in agarose gel and resultant chondrocyte- agarose constructs, a well-established experimental model to examine the effect of mechanical loadings on the chondrocyte metabolism, were cultured with a traction loading on the construct surface to examine its effect on the regeneration of the cartilaginous tissue by chondrocytes. Customdesigned mechanical loading equipment was developed to apply the traction loading on the upper surface of constructs being cultured in the CO2 incubator. After 2 or 3 weeks culture, quantities of glycosaminoglycan (GAG) molecules that proteoglycan, and type II collagen were determined, and immunofluorescent staining of keratin sulfate, a type of GAG, and type II collagen was performed to verify the chondrocyte biosynthesis of extra cellular matrix (ECM) and characterize the structure of elaborated cartilaginous tissue by confocal laser scanning microscopy (CLSM). Results indicated that the traction loading enhance ECM biosynthesis in the surface region of constructs and collagen rich layer covered with GAG rich superficial layer was formed in the articulation surface. Results of quantification for ECM molecules indicated that the production of type II collagen and GAG was more significant outside the slide track compared with inside the slide track.
AB - In this study, chondrocytes isolated from bovine cartilage tissue were seeded in agarose gel and resultant chondrocyte- agarose constructs, a well-established experimental model to examine the effect of mechanical loadings on the chondrocyte metabolism, were cultured with a traction loading on the construct surface to examine its effect on the regeneration of the cartilaginous tissue by chondrocytes. Customdesigned mechanical loading equipment was developed to apply the traction loading on the upper surface of constructs being cultured in the CO2 incubator. After 2 or 3 weeks culture, quantities of glycosaminoglycan (GAG) molecules that proteoglycan, and type II collagen were determined, and immunofluorescent staining of keratin sulfate, a type of GAG, and type II collagen was performed to verify the chondrocyte biosynthesis of extra cellular matrix (ECM) and characterize the structure of elaborated cartilaginous tissue by confocal laser scanning microscopy (CLSM). Results indicated that the traction loading enhance ECM biosynthesis in the surface region of constructs and collagen rich layer covered with GAG rich superficial layer was formed in the articulation surface. Results of quantification for ECM molecules indicated that the production of type II collagen and GAG was more significant outside the slide track compared with inside the slide track.
UR - http://www.scopus.com/inward/record.url?scp=84928234777&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928234777&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-02913-9_67
DO - 10.1007/978-3-319-02913-9_67
M3 - Conference contribution
AN - SCOPUS:84928234777
T3 - IFMBE Proceedings
SP - 263
EP - 266
BT - The 15th International Conference on Biomedical Engineering, ICBME 2013
A2 - Goh, James
PB - Springer Verlag
T2 - 15th International Conference on Biomedical Engineering, ICBME 2013
Y2 - 4 December 2013 through 7 December 2013
ER -