TY - JOUR
T1 - Development of a microinjection system for RNA interference in the water flea Daphnia pulex
AU - Hiruta, Chizue
AU - Toyota, Kenji
AU - Miyakawa, Hitoshi
AU - Ogino, Yukiko
AU - Miyagawa, Shinichi
AU - Tatarazako, Norihisa
AU - Shaw, Joseph R.
AU - Iguchi, Taisen
N1 - Funding Information:
The authors are grateful to Dr. Raphael Guzman, Department of Molecular Cell Biology and Cancer Research Laboratory of University of California, Berkeley, for his critical reading of this manuscript. Daphnia pulex genomic sequence data was produced by The Center for Genomics and Bioinformatics at Indiana University and distributed via wFleaBase in collaboration with the Daphnia Genomics Consortium https://wiki.cgb. indiana.edu/display/DGC/Home. We thank members of the Iguchi laboratory for helpful advice and discussions. This work was supported by a JSPS Research Fellowship for Young Scientists to CH (No.12J04065), KT (No.12J05579), a grant from Ministry of the Environment, Japan and MEXT KAKENHI Grant Number 24657022, 24370029 to TI, and a grant from the National Institute of Environmental Health Sciences to JRS (NIEHS R01 ES019324). Our work benefits from, and contributes to the Daphnia Genomics Consortium.
PY - 2013/11/5
Y1 - 2013/11/5
N2 - Background: The ubiquitous, freshwater microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have a well annotated, reference genome assembly that revealed an unusually high gene count highlighted by a large gene orphanage,-i.e., previously uncharacterized genes. Daphnia are capable of either clonal or sexual reproduction, making them ideally suited for genetic manipulation, but the establishment of gene manipulation techniques is needed to accurately define gene functions. Although previous investigations developed an RNA interference (RNAi) system for one congener D. magna, these methods are not appropriate for D. pulex because of the smaller size of their early embryos. In these studies, we develop RNAi techniques for D. pulex by first determining the optimum culture conditions of their isolated embryos and then applying these conditions to the development of microinjection techniques and proof-of-principle RNAi experiments.Results: We found that isolated embryos were best cultured on a 2% agar plate bathed in 60 mM sucrose dissolved in M4 media, providing optimal conditions for microinjections. Then, we injected double-stranded (ds)RNA specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for limb development in invertebrates and vertebrates. Injected embryos presented with defects in the second antenna and appendage development, and dsRNA induced the degradation of Dll mRNAs, indicating that this technique successfully inhibited transcription of the target gene.Conclusions: We developed a microinjection system for RNAi studies in D. pulex. These techniques add to the growing genomic toolbox and enhance the genetic tractability of this important model for environmental, evolutionary, and developmental genomics.
AB - Background: The ubiquitous, freshwater microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have a well annotated, reference genome assembly that revealed an unusually high gene count highlighted by a large gene orphanage,-i.e., previously uncharacterized genes. Daphnia are capable of either clonal or sexual reproduction, making them ideally suited for genetic manipulation, but the establishment of gene manipulation techniques is needed to accurately define gene functions. Although previous investigations developed an RNA interference (RNAi) system for one congener D. magna, these methods are not appropriate for D. pulex because of the smaller size of their early embryos. In these studies, we develop RNAi techniques for D. pulex by first determining the optimum culture conditions of their isolated embryos and then applying these conditions to the development of microinjection techniques and proof-of-principle RNAi experiments.Results: We found that isolated embryos were best cultured on a 2% agar plate bathed in 60 mM sucrose dissolved in M4 media, providing optimal conditions for microinjections. Then, we injected double-stranded (ds)RNA specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for limb development in invertebrates and vertebrates. Injected embryos presented with defects in the second antenna and appendage development, and dsRNA induced the degradation of Dll mRNAs, indicating that this technique successfully inhibited transcription of the target gene.Conclusions: We developed a microinjection system for RNAi studies in D. pulex. These techniques add to the growing genomic toolbox and enhance the genetic tractability of this important model for environmental, evolutionary, and developmental genomics.
UR - http://www.scopus.com/inward/record.url?scp=84887068455&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887068455&partnerID=8YFLogxK
U2 - 10.1186/1472-6750-13-96
DO - 10.1186/1472-6750-13-96
M3 - Article
C2 - 24188141
AN - SCOPUS:84887068455
SN - 1472-6750
VL - 13
JO - BMC Biotechnology
JF - BMC Biotechnology
M1 - 96
ER -