Abstract
In the present work, a sensing system for methane gas leakage monitoring based on a differential absorption lidar with a high temporal resolution is proposed and a spectrally narrowed light source at 1.67 μm is developed for the same. To realize a compact light source, an injection seeded optical parametric oscillator (OPO) combined with two-stage optical parametric amplifiers (OPAs) is considered. Both OPO and OPAs were pumped by a compact frequency doubled Nd:YAG laser, and a single-mode diode laser (781.6 nm) was employed for injection seeding of the OPO. The output energy of around 5 mJ corresponding to a pump input of 85 mJ was obtained using Ce doped KTP (Ce:KTiOPO4) crystals. The spectral width of the source was measured as 0.5 cm-1 with a beam divergence angle of less than 2 mrad. These output characteristics are satisfactorily meeting the requirements to detect the methane leakage in a short range.
Original language | English |
---|---|
Pages (from-to) | 471-479 |
Number of pages | 9 |
Journal | Proceedings of SPIE-The International Society for Optical Engineering |
Volume | 4153 |
DOIs | |
Publication status | Published - 2001 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering