TY - JOUR
T1 - Determining storm sampling requirements for improving precision of annual load estimates of nutrients from a small forested watershed
AU - Ide, Jun'Ichiro
AU - Chiwa, Masaaki
AU - Higashi, Naoko
AU - Maruno, Ryoko
AU - Mori, Yasushi
AU - Otsuki, Kyoichi
N1 - Funding Information:
Acknowledgments This work was supported in part by Grants-in-Aid for Scientific Research (#04J06809, #17380096, #18208014, and #21380098) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Espec Foundation for Global Environment Research and Technology, the Sasagawa Scientific Research Grant from the Japan Science Society, and the Shimane University Priority Research Project. We acknowledge the contributions of time and comments from two anonymous reviewers.
PY - 2012/8
Y1 - 2012/8
N2 - T'his study sought to determine the lowest number of storm events required for adequate estimation of annual nutrient loads from a forested watershed using the regression equation between cumulative load (ΣL) and cumulative stream discharge (ΣQ). Hydrological surveys were conducted for 4 years, and stream water was sampled sequentially at 15-60-min intervals during 24 h in 20 events, as well as weekly in a small forested watershed. The bootstrap sampling technique was used to determine the regression (ΣL-ΣQ) equations of dissolved nitrogen (DN) and phosphorus (DP), particulate nitrogen (PN) and phosphorus (PP), dissolved inorganic nitrogen (DIN), and suspended solid (SS) for each dataset of ΣL and ΣQ. For dissolved nutrients (DN, DP, DIN), the coefficient of variance (CV) in 100 replicates of 4-year average annual load estimates was below 20% with datasets composed of five storm events. For particulate nutrients (PN, PP, SS), the CV exceeded 20%, even with datasets composed of more than ten storm events. The differences in the number of storm events required for precise load estimates between dissolved and particulate nutrients were attributed to the goodness of fit of the ΣL-ΣQ equations. Bootstrap simulation based on flow-stratified sampling resulted in fewer storm events than the simulation based on random sampling and showed that only three storm events were required to give a CV below 20% for dissolved nutrients. These results indicate that a sampling design considering discharge levels reduces the frequency of laborious chemical analyses of water samples required throughout the year.
AB - T'his study sought to determine the lowest number of storm events required for adequate estimation of annual nutrient loads from a forested watershed using the regression equation between cumulative load (ΣL) and cumulative stream discharge (ΣQ). Hydrological surveys were conducted for 4 years, and stream water was sampled sequentially at 15-60-min intervals during 24 h in 20 events, as well as weekly in a small forested watershed. The bootstrap sampling technique was used to determine the regression (ΣL-ΣQ) equations of dissolved nitrogen (DN) and phosphorus (DP), particulate nitrogen (PN) and phosphorus (PP), dissolved inorganic nitrogen (DIN), and suspended solid (SS) for each dataset of ΣL and ΣQ. For dissolved nutrients (DN, DP, DIN), the coefficient of variance (CV) in 100 replicates of 4-year average annual load estimates was below 20% with datasets composed of five storm events. For particulate nutrients (PN, PP, SS), the CV exceeded 20%, even with datasets composed of more than ten storm events. The differences in the number of storm events required for precise load estimates between dissolved and particulate nutrients were attributed to the goodness of fit of the ΣL-ΣQ equations. Bootstrap simulation based on flow-stratified sampling resulted in fewer storm events than the simulation based on random sampling and showed that only three storm events were required to give a CV below 20% for dissolved nutrients. These results indicate that a sampling design considering discharge levels reduces the frequency of laborious chemical analyses of water samples required throughout the year.
UR - http://www.scopus.com/inward/record.url?scp=84864830528&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864830528&partnerID=8YFLogxK
U2 - 10.1007/s10661-011-2299-9
DO - 10.1007/s10661-011-2299-9
M3 - Article
C2 - 21894507
AN - SCOPUS:84864830528
SN - 0167-6369
VL - 184
SP - 4747
EP - 4762
JO - Environmental Monitoring and Assessment
JF - Environmental Monitoring and Assessment
IS - 8
ER -