Detachment of stretched viscoelastic fibrils

N. J. Glassmaker, C. Y. Hui, T. Yamaguchi, C. Creton

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)


New experimental results are presented about the final stage of failure of soft viscoelastic adhesives. A microscopic view of the detachment of the adhesive shows that after cavity growth and expansion, well adhered soft adhesives form a network of fibrils connected to expanded contacting feet which fail via a sliding mechanism, sensitive to interfacial shear stresses rather than by a fracture mechanism as sometimes suggested in earlier work. A mechanical model of this stretching and sliding failure phenomenon is presented which treats the fibril as a nonlinear elastic or viscoelastic rod and the foot as an elastic layer subject to a friction force proportional to the local displacement rate. The force on the stretched rod drives the sliding of the foot against the substrate. The main experimental parameter controlling the failure strain and stress during the sliding process is identified by the model as the normalized probe pull speed, which also depends on the magnitude of the friction and PSA modulus. In addition, the material properties, viscoelasticity and finite extensibility of the polymer chains, are shown to have an important effect on both the details of the sliding process and the ultimate failure strain and stress.

Original languageEnglish
Pages (from-to)253-266
Number of pages14
JournalEuropean Physical Journal E
Issue number3
Publication statusPublished - Mar 2008
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biophysics
  • General Chemistry
  • General Materials Science
  • Surfaces and Interfaces


Dive into the research topics of 'Detachment of stretched viscoelastic fibrils'. Together they form a unique fingerprint.

Cite this