Design and synthesis of strong root gravitropism inhibitors with no concomitant growth inhibition

Takeshi Nishimura, Saki Makigawa, Jun Sun, Kozue Kodama, Hiromi Sugiyama, Kenji Matsumoto, Takayuki Iwata, Naoya Wasano, Arihiro Kano, Miyo Terao Morita, Yoshiharu Fujii, Mitsuru Shindo

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Herein, we describe a highly potent gravitropic bending inhibitor with no concomitant growth inhibition. Previously, we reported that (2Z,4E)-5-phenylpenta-2,4-dienoic acid (ku-76) selectively inhibits root gravitropic bending of lettuce radicles at 5 μM. Based on the structure–activity relationship study of ku-76 as a lead compound, we designed and synthesized various C4-substituted analogs of ku-76. Among the analogs, 4-phenylethynyl analog exhibited the highest potency for gravitropic bending inhibition, which was effective at only 0.01 μM. Remarkably, 4-phenylethynyl analog is much more potent than the known inhibitor, NPA. Substitution in the para position on the aromatic ring of 4-phenylethynyl group was tolerated without diminished activity. In addition, evaluation using Arabidopsis indicated that 4-phenylethynyl analog inhibits gravitropism by affecting auxin distribution in the root tips. Based on the effects on Arabidopsis phenotypes, 4-phenylethynyl analog may be a novel inhibitor that differs in action from the previously reported auxin transport inhibitors.

Original languageEnglish
Article number5173
JournalScientific reports
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2023

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Design and synthesis of strong root gravitropism inhibitors with no concomitant growth inhibition'. Together they form a unique fingerprint.

Cite this