TY - GEN
T1 - DeepSonar
T2 - 28th ACM International Conference on Multimedia, MM 2020
AU - Wang, Run
AU - Juefei-Xu, Felix
AU - Huang, Yihao
AU - Guo, Qing
AU - Xie, Xiaofei
AU - Ma, Lei
AU - Liu, Yang
N1 - Funding Information:
This research was supported in part by Singapore National Cy-bersecurity R&D Program No. NRF2018NCR-NCR005-0001, National Satellite of Excellence in Trustworthy Software System No. NRF2018NCR-NSOE003-0001, NRF Investigatorship No. NRFI06-2020-0022. It was also supported by JSPS KAKENHI Grant No. 20H04168, 19K24348, 19H04086, and JST-Mirai Program Grant No. JPMJMI18BB, Japan. We gratefully acknowledge the support of NVIDIA AI Tech Center (NVAITC) to our research.
Publisher Copyright:
© 2020 ACM.
PY - 2020/10/12
Y1 - 2020/10/12
N2 - With the recent advances in voice synthesis, AI-synthesized fake voices are indistinguishable to human ears and widely are applied to produce realistic and natural DeepFakes, exhibiting real threats to our society. However, effective and robust detectors for synthesized fake voices are still in their infancy and are not ready to fully tackle this emerging threat. In this paper, we devise a novel approach, named DeepSonar, based on monitoring neuron behaviors of speaker recognition (SR) system, i.e., a deep neural network (DNN), to discern AI-synthesized fake voices. Layer-wise neuron behaviors provide an important insight to meticulously catch the differences among inputs, which are widely employed for building safety, robust, and interpretable DNNs. In this work, we leverage the power of layer-wise neuron activation patterns with a conjecture that they can capture the subtle differences between real and AI-synthesized fake voices, in providing a cleaner signal to classifiers than raw inputs. Experiments are conducted on three datasets (including commercial products from Google, Baidu, etc) containing both English and Chinese languages to corroborate the high detection rates (98.1% average accuracy) and low false alarm rates (about 2% error rate) of DeepSonar in discerning fake voices. Furthermore, extensive experimental results also demonstrate its robustness against manipulation attacks (e.g., voice conversion and additive real-world noises). Our work further poses a new insight into adopting neuron behaviors for effective and robust AI aided multimedia fakes forensics as an inside-out approach instead of being motivated and swayed by various artifacts introduced in synthesizing fakes.
AB - With the recent advances in voice synthesis, AI-synthesized fake voices are indistinguishable to human ears and widely are applied to produce realistic and natural DeepFakes, exhibiting real threats to our society. However, effective and robust detectors for synthesized fake voices are still in their infancy and are not ready to fully tackle this emerging threat. In this paper, we devise a novel approach, named DeepSonar, based on monitoring neuron behaviors of speaker recognition (SR) system, i.e., a deep neural network (DNN), to discern AI-synthesized fake voices. Layer-wise neuron behaviors provide an important insight to meticulously catch the differences among inputs, which are widely employed for building safety, robust, and interpretable DNNs. In this work, we leverage the power of layer-wise neuron activation patterns with a conjecture that they can capture the subtle differences between real and AI-synthesized fake voices, in providing a cleaner signal to classifiers than raw inputs. Experiments are conducted on three datasets (including commercial products from Google, Baidu, etc) containing both English and Chinese languages to corroborate the high detection rates (98.1% average accuracy) and low false alarm rates (about 2% error rate) of DeepSonar in discerning fake voices. Furthermore, extensive experimental results also demonstrate its robustness against manipulation attacks (e.g., voice conversion and additive real-world noises). Our work further poses a new insight into adopting neuron behaviors for effective and robust AI aided multimedia fakes forensics as an inside-out approach instead of being motivated and swayed by various artifacts introduced in synthesizing fakes.
UR - http://www.scopus.com/inward/record.url?scp=85095380559&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095380559&partnerID=8YFLogxK
U2 - 10.1145/3394171.3413716
DO - 10.1145/3394171.3413716
M3 - Conference contribution
AN - SCOPUS:85095380559
T3 - MM 2020 - Proceedings of the 28th ACM International Conference on Multimedia
SP - 1207
EP - 1216
BT - MM 2020 - Proceedings of the 28th ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
Y2 - 12 October 2020 through 16 October 2020
ER -