TY - GEN
T1 - Curious-II
T2 - 2023 Genetic and Evolutionary Computation Conference Companion, GECCO 2023 Companion
AU - Jiang, Yuzi
AU - Vargas, Danilo Vasconcellos
N1 - Publisher Copyright:
© 2023 Copyright held by the owner/author(s).
PY - 2023/7/15
Y1 - 2023/7/15
N2 - Novelty search’s ability to efficiently explore the fitness space is gaining attention. Different novelty metrics, however, produce different search results. Here we show that novelty metrics are complementary and a multi-novelty approach improves the performance substantially. Specifically, we propose a multi-novelty search multi/many-objective algorithm (Curious II) that has both Euclidian distance and prediction-error novelty metrics. On the one hand, the Euclidian distance based novelty metric makes the subpopulation explore subspaces with low crowd density and avoids premature convergence. On the other hand, the prediction-error novelty metric guides a subpopulation to explore subspaces with unexpected objective fitness. Experiments reveal that using both novelty metrics in a multi-novelty algorithm has strong benefits. Curious II was compared with two state-of-the-art algorithms and two novelty search-based algorithms on the WFG 1-8 test problem with up to 10 objectives. It outperforms all the others in 28 out of 32 tasks for the HV index and in 27 out of 32 tasks for the IGD index.
AB - Novelty search’s ability to efficiently explore the fitness space is gaining attention. Different novelty metrics, however, produce different search results. Here we show that novelty metrics are complementary and a multi-novelty approach improves the performance substantially. Specifically, we propose a multi-novelty search multi/many-objective algorithm (Curious II) that has both Euclidian distance and prediction-error novelty metrics. On the one hand, the Euclidian distance based novelty metric makes the subpopulation explore subspaces with low crowd density and avoids premature convergence. On the other hand, the prediction-error novelty metric guides a subpopulation to explore subspaces with unexpected objective fitness. Experiments reveal that using both novelty metrics in a multi-novelty algorithm has strong benefits. Curious II was compared with two state-of-the-art algorithms and two novelty search-based algorithms on the WFG 1-8 test problem with up to 10 objectives. It outperforms all the others in 28 out of 32 tasks for the HV index and in 27 out of 32 tasks for the IGD index.
UR - http://www.scopus.com/inward/record.url?scp=85169054797&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85169054797&partnerID=8YFLogxK
U2 - 10.1145/3583133.3590543
DO - 10.1145/3583133.3590543
M3 - Conference contribution
AN - SCOPUS:85169054797
T3 - GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
SP - 375
EP - 378
BT - GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
PB - Association for Computing Machinery, Inc
Y2 - 15 July 2023 through 19 July 2023
ER -