TY - JOUR
T1 - Crystal structures of the quinone oxidoreductase from Thermus thermophilus HB8 and its complex with NADPH
T2 - Implication for NADPH and substrate recognition
AU - Shimomura, Yoshimitsu
AU - Kakuta, Yoshimitsu
AU - Fukuyama, Keiichi
PY - 2003/7
Y1 - 2003/7
N2 - The crystal structures of the ζ-crystalline-like soluble quinone oxidoreductase from Thermus thermophilus HB8 (QORTt) and of its complex with NADPH have been determined at 2.3- and 2.8-Å resolutions, respectively. QORTt is composed of two domains, and its overall fold is similar to the folds of Escherichia coli quinone oxidoreductase (QOREc) and horse liver alcohol dehydrogenase. QORTt forms a homodimer in the crystal by interaction of the βF-strands in domain II, forming a large β-sheet that crosses the dimer interface. High thermostability of QORTt was evidenced by circular dichroic measurement. NADPH is located between the two domains in the QORTt-NADPH complex. The disordered segment involved in the coenzyme binding of apo-QORTt becomes ordered upon NADPH binding. The segment covers an NADPH-binding cleft and may serve as a lid. The 2′-phosphate group of the adenine of NADPH is surrounded by polar and positively charged residues in QORTt, suggesting that QORTt binds NADPH more readily than NADH. The putative substrate-binding site of QORTt unlike that of QOREc, is largely blocked by nearby residues, permitting access only to small substrates. This may explain why QORTt has weak p-benzoquinone reduction activity and is inactive with such large substrates of QOREc as 5-hydroxy-1,4-naphthoquinone and phenanthraquinone.
AB - The crystal structures of the ζ-crystalline-like soluble quinone oxidoreductase from Thermus thermophilus HB8 (QORTt) and of its complex with NADPH have been determined at 2.3- and 2.8-Å resolutions, respectively. QORTt is composed of two domains, and its overall fold is similar to the folds of Escherichia coli quinone oxidoreductase (QOREc) and horse liver alcohol dehydrogenase. QORTt forms a homodimer in the crystal by interaction of the βF-strands in domain II, forming a large β-sheet that crosses the dimer interface. High thermostability of QORTt was evidenced by circular dichroic measurement. NADPH is located between the two domains in the QORTt-NADPH complex. The disordered segment involved in the coenzyme binding of apo-QORTt becomes ordered upon NADPH binding. The segment covers an NADPH-binding cleft and may serve as a lid. The 2′-phosphate group of the adenine of NADPH is surrounded by polar and positively charged residues in QORTt, suggesting that QORTt binds NADPH more readily than NADH. The putative substrate-binding site of QORTt unlike that of QOREc, is largely blocked by nearby residues, permitting access only to small substrates. This may explain why QORTt has weak p-benzoquinone reduction activity and is inactive with such large substrates of QOREc as 5-hydroxy-1,4-naphthoquinone and phenanthraquinone.
UR - http://www.scopus.com/inward/record.url?scp=0037816242&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037816242&partnerID=8YFLogxK
U2 - 10.1128/JB.185.14.4211-4218.2003
DO - 10.1128/JB.185.14.4211-4218.2003
M3 - Article
C2 - 12837796
AN - SCOPUS:0037816242
SN - 0021-9193
VL - 185
SP - 4211
EP - 4218
JO - Journal of bacteriology
JF - Journal of bacteriology
IS - 14
ER -