Crystal and electronic structure engineering of tin monoxide by external pressure

Kun Li, Junjie Wang, Vladislav A. Blatov, Yutong Gong, Naoto Umezawa, Tomofumi Tada, Hideo Hosono, Artem R. Oganov

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Although tin monoxide (SnO) is an interesting compound due to its p-type conductivity, a widespread application of SnO has been limited by its narrow band gap of 0.7 eV. In this work, we theoretically investigate the structural and electronic properties of several SnO phases under high pressures through employing van der Waals (vdW) functionals. Our calculations reveal that a metastable SnO (β-SnO), which possesses space group P21/c and a wide band gap of 1.9 eV, is more stable than α-SnO at pressures higher than 80 GPa. Moreover, a stable (space group P2/c) and a metastable (space group Pnma) phases of SnO appear at pressures higher than 120 GPa. Energy and topological analyses show that P2/c-SnO has a high possibility to directly transform to β-SnO at around 120 GPa. Our work also reveals that β-SnO is a necessary intermediate state between high-pressure phase Pnma-SnO and low-pressure phase α-SnO for the phase transition path Pnma-SnO →β-SnO → α-SnO. Two phase transition analyses indicate that there is a high possibility to synthesize β-SnO under high-pressure conditions and have it remain stable under normal pressure. Finally, our study reveals that the conductive property of β-SnO can be engineered in a low-pressure range (0–9 GPa) through a semiconductor-to-metal transition, while maintaining transparency in the visible light range.

Original languageEnglish
Pages (from-to)565-577
Number of pages13
JournalJournal of Advanced Ceramics
Volume10
Issue number3
DOIs
Publication statusPublished - Jun 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites

Fingerprint

Dive into the research topics of 'Crystal and electronic structure engineering of tin monoxide by external pressure'. Together they form a unique fingerprint.

Cite this