Critical path based microarchitectural bottleneck analysis for out-of-order execution

Research output: Contribution to journalArticlepeer-review

Abstract

SUMMARY Correctly understanding microarchitectural bottlenecks is important to optimize performance and energy of OoO (Out-of-Order) processors. Although CPI (Cycles Per Instruction) stack has been utilized for this purpose, it stacks architectural events heuristically by counting how many times the events occur, and the order of stacking affects the result, which may be misleading. It is because CPI stack does not consider the execution path of dynamic instructions. Critical path analysis (CPA) is a well-known method to identify the critical execution path of dynamic instruction execution on OoO processors. The critical path consists of the sequence of events that determines the execution time of a program on a certain processor. We develop a novel representation of CPCI stack (Cycles Per Critical Instruction stack), which is CPI stack based on CPA. The main challenge in constructing CPCI stack is how to analyze a large number of paths because CPA often results in numerous critical paths. In this paper, we show that there are more than ten to the tenth power critical paths in the execution of only one thousand instructions in 35 benchmarks out of 48 from SPEC CPU2006. Then, we propose a statistical method to analyze all the critical paths and show a case study using the benchmarks.

Original languageEnglish
Pages (from-to)758-766
Number of pages9
JournalIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
VolumeE102A
Issue number6
DOIs
Publication statusPublished - 2019

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Computer Graphics and Computer-Aided Design
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Critical path based microarchitectural bottleneck analysis for out-of-order execution'. Together they form a unique fingerprint.

Cite this