TY - JOUR
T1 - CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells
AU - Negi, Juntaro
AU - Matsuda, Osamu
AU - Nagasawa, Takashi
AU - Oba, Yasuhiro
AU - Takahashi, Hideyuki
AU - Kawai-Yamada, Maki
AU - Uchimiya, Hirofumi
AU - Hashimoto, Mimi
AU - Iba, Koh
N1 - Funding Information:
Acknowledgements We thank M. H. Sato for providing the tonoplast control plants, I. C. Mori for technical advice, and N. Kawahara for technical assistance. This research was supported by a Core Research for Evolution and Technology (CREST)-type JST grant and a JSPS grant, and by the Ministry of Agriculture, Forestry and Fisheries of Japan (Rice Genome Project IP-5005) grants (K.I.). J.N. is the recipient of scholarships from JSPS and Nara Institute of Science and Technology (NAIST). M.H. is the JST post-doctoral fellow.
PY - 2008/3/27
Y1 - 2008/3/27
N2 - The continuing rise in atmospheric [CO2] is predicted to have diverse and dramatic effects on the productivity of agriculture, plant ecosystems and gas exchange. Stomatal pores in the epidermis provide gates for the exchange of CO2 and water between plants and the atmosphere, processes vital to plant life. Increased [CO2] has been shown to enhance anion channel activity proposed to mediate efflux of osmoregulatory anions (Cl- and malate2-) from guard cells during stomatal closure. However, the genes encoding anion efflux channels in plant plasma membranes remain unknown. Here we report the isolation of an Arabidopsis gene, SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1, At1g12480), which mediates CO 2 sensitivity in regulation of plant gas exchange. The SLAC1 protein is a distant homologue of bacterial and fungal C4-dicarboxylate transporters, and is localized specifically to the plasma membrane of guard cells. It belongs to a protein family that in Arabidopsis consists of four structurally related members that are common in their plasma membrane localization, but show distinct tissue-specific expression patterns. The loss-of-function mutation in SLAC1 was accompanied by an over-accumulation of the osmoregulatory anions in guard cell protoplasts. Guard-cell-specific expression of SLAC1 or its family members resulted in restoration of the wild-type stomatal responses, including CO 2 sensitivity, and also in the dissipation of the over-accumulated anions. These results suggest that SLAC1-family proteins have an evolutionarily conserved function that is required for the maintenance of organic/inorganic anion homeostasis on the cellular level.
AB - The continuing rise in atmospheric [CO2] is predicted to have diverse and dramatic effects on the productivity of agriculture, plant ecosystems and gas exchange. Stomatal pores in the epidermis provide gates for the exchange of CO2 and water between plants and the atmosphere, processes vital to plant life. Increased [CO2] has been shown to enhance anion channel activity proposed to mediate efflux of osmoregulatory anions (Cl- and malate2-) from guard cells during stomatal closure. However, the genes encoding anion efflux channels in plant plasma membranes remain unknown. Here we report the isolation of an Arabidopsis gene, SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1, At1g12480), which mediates CO 2 sensitivity in regulation of plant gas exchange. The SLAC1 protein is a distant homologue of bacterial and fungal C4-dicarboxylate transporters, and is localized specifically to the plasma membrane of guard cells. It belongs to a protein family that in Arabidopsis consists of four structurally related members that are common in their plasma membrane localization, but show distinct tissue-specific expression patterns. The loss-of-function mutation in SLAC1 was accompanied by an over-accumulation of the osmoregulatory anions in guard cell protoplasts. Guard-cell-specific expression of SLAC1 or its family members resulted in restoration of the wild-type stomatal responses, including CO 2 sensitivity, and also in the dissipation of the over-accumulated anions. These results suggest that SLAC1-family proteins have an evolutionarily conserved function that is required for the maintenance of organic/inorganic anion homeostasis on the cellular level.
UR - http://www.scopus.com/inward/record.url?scp=41349104941&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=41349104941&partnerID=8YFLogxK
U2 - 10.1038/nature06720
DO - 10.1038/nature06720
M3 - Article
C2 - 18305482
AN - SCOPUS:41349104941
SN - 0028-0836
VL - 452
SP - 483
EP - 486
JO - Nature
JF - Nature
IS - 7186
ER -