Abstract
Alcohol is considered as a potential CO2-free energy carrier to replace hydrogen because of its high energy density, appropriate chemical stability and low-cost production. In this study, we describe the development of a simple in situ growth method to prepare a binder free IrOx-Ti anode with a very low IrOx loading amount (< 0.25 mg cm−2), and the obtained catalyst shows a high oxygen evolution reaction (OER) activity and durability in acidic media. The performance of a polymer electrolyte alcohol electrosynthesis cell (PEAEC) using this anode catalyst shows a better performance than that of PEAEC using a typical commercial IrO2-Ti paper anode with the loading of IrO2 = 3 mg cm−2. Furthermore, the key factors that affect the performance of the PEAEC are determined by comparing the performances of the PEAEC with different anode catalysts.
Original language | English |
---|---|
Article number | 137078 |
Journal | Electrochimica Acta |
Volume | 361 |
DOIs | |
Publication status | Published - Nov 20 2020 |
All Science Journal Classification (ASJC) codes
- General Chemical Engineering
- Electrochemistry