Corrugated fiberboard as a positioning insert for patients undergoing radiotherapy

Katsumasa Nakamura, Haruo Yoshikawa, Tomoharu Akai, Satoshi Nomoto, Yoshiyuki Shioyama, Yasuo Kuwabara, Kengo Yoshimitsu

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We have developed a new body fixation system for single patient use, which consists of a vacuum cushion, a thermoplastic fixation sheet which is used to suppress involuntary and voluntary patient movement, and a triple-wall corrugated fiberboard base plate to which both the vacuum cushion and the thermoplastic sheet are affixed. To evaluate the characteristics of the fiberboard as a patient-positioning insert, the photon beam attenuation of a fiberboard base plate, a carbon-fiber base plate, and a vacuum-formed cushion were compared. The strength of the fiberboard was also evaluated. The attenuation for the carbonfiber base plate was 3.7% and 2.6% in 4 MV and 10 MV photon beams, respectively, while the results were less for the fiberboard base plate, i.e. 1.9% and 1.6%. The vacuum-formed cushion had a minimal effect on transmission. None of the materials subsided under the weight loading of 20 g/cm2. There was no difference between the thicknesses of the fiberboard before and after a 50 times daily load with the 60 kg weight of a volunteer. Corrugated fiberboard is a robust and low attenuating material that functions well as a patient-positioning insert.

Original languageEnglish
Pages (from-to)87-90
Number of pages4
JournalJournal of radiation research
Volume51
Issue number1
DOIs
Publication statusPublished - 2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Radiation
  • Radiology Nuclear Medicine and imaging
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Corrugated fiberboard as a positioning insert for patients undergoing radiotherapy'. Together they form a unique fingerprint.

Cite this