Control of optical and electrical properties of ZnO nanocrystals by nanosecond-laser annealing

T. Shimogaki, T. Ofuji, N. Tetsuyama, H. Kawahara, M. Higashihata, H. Ikenoue, D. Nakamura, T. Okada

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)


Effects of laser annealing on electrical and optical properties of Zinc oxide (ZnO) nanocrystals, which are expected as building blocks for optoelectronic devices, have been investigated in this study. In the case of fabricating p-n junction in single one-dimensional ZnO nanocrystal, phosphorus-ions implanted p-type ZnO nanocrystals were recrystallized and recovered in the optical properties by nanosecond-laser annealing using a KrF excimer laser. Antimony-doped p-type ZnO nanocrystals were synthesized by irradiating laminated structure which antimony thin film were deposited on ZnO nanocrystals with the laser beam. Additionally, it is possible to control the growth rate of ZnO nanowires by using laser annealing. Irradiating with pulsed laser a part of ZnO buffer layer deposited on the a-cut sapphire substrate, then ZnO nanowires were grown on the ZnO buffer layer by the nanoparticle assisted pulsed laser deposition method. As a result, the clear boundary of the laser annealed and non-laser annealed area was appeared. It was observed that ZnO nanowires were grown densely at non-laser annealed area, on the other hand, sparse ones were grown at the laser-annealed region. In this report, the possibility of laser annealing techniques to establish the stable and reliable fabrication process of ZnO nanowires-based LD and LED are discussed on the basis of experimental results.

Original languageEnglish
Title of host publicationOxide-Based Materials and Devices V
ISBN (Print)9780819499004
Publication statusPublished - 2014
Event5th Annual Oxide Based Materials and Devices Conference - San Francisco, CA, United States
Duration: Feb 2 2014Feb 5 2014

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


Other5th Annual Oxide Based Materials and Devices Conference
Country/TerritoryUnited States
CitySan Francisco, CA

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Control of optical and electrical properties of ZnO nanocrystals by nanosecond-laser annealing'. Together they form a unique fingerprint.

Cite this