Control of DNA translocation velocities for nanopore-based DNA sequencing

Xiaoyin Sun, Takao Yasui, Sakon Rahong, Takeshi Yanagida, Noritada Kaji, Masaki Kanai, Kazuki Nagashima, Tomoji Kawai, Yoshinobu Baba

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Reducing translocation velocity of DNA molecules in a nanopore is an urgent issue for rapid single identification. Here we fabricated a nanopore-channel, which has 300 × 300nm (width and depth) dimensions for electrophoretically driven transport of single DNA molecule, and decreased the single DNA molecule's translocation velocity by changing length of the nanopore-channels or electric fields. We obtained a 180 kbp/s translocation velocity for 10 kbp DNA through the 250 μm long nanopore-channel by applying 3 V.

Original languageEnglish
Title of host publication17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013
PublisherChemical and Biological Microsystems Society
Pages1117-1119
Number of pages3
ISBN (Print)9781632666246
Publication statusPublished - 2013
Externally publishedYes
Event17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013 - Freiburg, Germany
Duration: Oct 27 2013Oct 31 2013

Publication series

Name17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013
Volume2

Other

Other17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013
Country/TerritoryGermany
CityFreiburg
Period10/27/1310/31/13

All Science Journal Classification (ASJC) codes

  • Bioengineering

Fingerprint

Dive into the research topics of 'Control of DNA translocation velocities for nanopore-based DNA sequencing'. Together they form a unique fingerprint.

Cite this