TY - GEN
T1 - Continual General Chunking Problem and SyncMap
AU - Vargas, Danilo Vasconcellos
AU - Asabuki, Toshitake
N1 - Funding Information:
This work was supported by JST, ACT-I Grant Number JP-50243 and JSPS KAKENHI Grant Number JP20241216.
Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021
Y1 - 2021
N2 - Humans possess an inherent ability to chunk sequences into their constituent parts. In fact, this ability is thought to bootstrap language skills and learning of image patterns which might be a key to a more animal-like type of intelligence. Here, we propose a continual generalization of the chunking problem (an unsupervised problem), encompassing fixed and probabilistic chunks, discovery of temporal and causal structures and their continual variations. Additionally, we propose an algorithm called SyncMap that can learn and adapt to changes in the problem by creating a dynamic map which preserves the correlation between variables. Results of SyncMap suggest that the proposed algorithm learn near optimal solutions, despite the presence of many types of structures and their continual variation. When compared to Word2vec, PARSER and MRIL, SyncMap surpasses or ties with the best algorithm on 66% of the scenarios while being the second best in the remaining 34%. SyncMap’s model-free simple dynamics and the absence of loss functions reveal that, perhaps surprisingly, much can be done with self-organization alone.
AB - Humans possess an inherent ability to chunk sequences into their constituent parts. In fact, this ability is thought to bootstrap language skills and learning of image patterns which might be a key to a more animal-like type of intelligence. Here, we propose a continual generalization of the chunking problem (an unsupervised problem), encompassing fixed and probabilistic chunks, discovery of temporal and causal structures and their continual variations. Additionally, we propose an algorithm called SyncMap that can learn and adapt to changes in the problem by creating a dynamic map which preserves the correlation between variables. Results of SyncMap suggest that the proposed algorithm learn near optimal solutions, despite the presence of many types of structures and their continual variation. When compared to Word2vec, PARSER and MRIL, SyncMap surpasses or ties with the best algorithm on 66% of the scenarios while being the second best in the remaining 34%. SyncMap’s model-free simple dynamics and the absence of loss functions reveal that, perhaps surprisingly, much can be done with self-organization alone.
UR - http://www.scopus.com/inward/record.url?scp=85113785653&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85113785653&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85113785653
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 10006
EP - 10014
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
Y2 - 2 February 2021 through 9 February 2021
ER -