Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes

Magnus So, Gen Inoue, Kayoung Park, Keita Nunoshita, Shota Ishikawa, Yoshifumi Tsuge

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


In this study, a discrete element method (DEM) that can simulate particle plastic deformation, sintering, and electrode compaction of all-solid-state batteries was developed. The model can simulate elastic, plastic, and viscoelastic deformations that occur particularly in mold compaction processes. When the stress exceeds the yield strength of the material, inelastic deformation occurs, which can be described by either a plastic or viscoelastic response. We applied this model to simulate mold compaction of an All-Solid-State Battery (ASSB) electrode. This study implements the following novel features: • The model was derived from the Maxwell viscoelastic model and enabled the simulation of the elastic, plastic, and viscoelastic deformation of particles in a mold. • Particle deformation and sintering are modelled by the rate expression of the equilibrium overlap. • The area and spring factors are introduced to account for numerical issues when the porosity approaches zero.

Original languageEnglish
Article number101857
Publication statusPublished - Jan 2022

All Science Journal Classification (ASJC) codes

  • Clinical Biochemistry
  • Medical Laboratory Technology


Dive into the research topics of 'Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes'. Together they form a unique fingerprint.

Cite this