Abstract
Understanding of the contact conductivity of carbon nanotubes (CNTs) will contribute to the further application of CNTs for electronic devices, such as thin film transistors whose channel or electrode is made of dispersed CNTs. In this study, we estimated the contact conductivity of a CNT/CNT interface from the in-plane conductivity of an uncapped CNT forest on SiC. Investigation of the electrical properties of dense CNT forests is also important to enable their electrical application. The in-plane conductivity of a dense CNT forest on silicon carbide normalized by its thickness was measured to be 50 S/cm, which is two to three orders of magnitude lower than the conductivity of a CNT yarn. It was also found that both the CNT cap region and the CNT bulk region exhibit in-plane conductivity. The contact conductivity of CNTs was estimated from the in-plane conductivity in the bulk region. Dense and uncapped CNT forest can be approximated by a conductive mesh, in which each conductive branch corresponds to the CNT/CNT contact conductance. The evaluated contact conductivity was in good agreement with that calculated from the tunneling effect.
Original language | English |
---|---|
Pages (from-to) | 6232-6238 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry C |
Volume | 120 |
Issue number | 11 |
DOIs | |
Publication status | Published - Mar 24 2016 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films