## Abstract

Given a graph, an L(p, 1)-labeling of the graph is an assignment f from the vertex set to the set of nonnegative integers such that for any pair of vertices u and v, |f(u) − f(v)| ≥ p if u and v are adjacent, and f(u) ≠ f(v) if u and v are at distance 2. The L(p, 1)-labeling problem is to minimize the span of f (i.e.,max_{u}_{∈V} (f(u)) − min_{u}_{∈V} (f(u)) + 1). It is known to be NP-hard even for graphs of maximum degree 3 or graphs with tree-width 2, whereas it is fixed-parameter tractable with respect to vertex cover number. Since the vertex cover number is a kind of the strongest parameter, there is a large gap between tractability and intractability from the viewpoint of parameterization. To fill up the gap, in this paper, we propose new fixed-parameter algorithms for L(p, 1)-Labeling by the twin cover number plus the maximum clique size and by the tree-width plus the maximum degree. These algorithms reduce the gap in terms of several combinations of parameters.

Original language | English |
---|---|

Pages (from-to) | 241-255 |

Number of pages | 15 |

Journal | Journal of Graph Algorithms and Applications |

Volume | 26 |

Issue number | 2 |

DOIs | |

Publication status | Published - 2022 |

Externally published | Yes |

## All Science Journal Classification (ASJC) codes

- Theoretical Computer Science
- General Computer Science
- Computer Science Applications
- Geometry and Topology
- Computational Theory and Mathematics