Comprehensive study of emission source contributions for tropospheric ozone formation over East Asia

Syuichi Itahashi, Hiroshi Hayami, Itsushi Uno

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)


Emission source contributions of tropospheric ozone (O3) were comprehensively investigated by using the higher-order decoupled direct method (HDDM) for sensitivity analysis and the ozone source apportionment technology (OSAT) for mass balance analysis in the comprehensive air-quality model with extensions (CAMx). The response of O to emissions reductions at various levels in mainland China, Korea, and Japan were estimated and compared with results calculated by the brute force method (BFM) where one model parameter is varied at a time. Emissions were assessed at three receptor sites in Japan that experienced severe pollution events in May 2009. For emissions from China, HDDM assessed O3 response with a bias of only up to 3 ppbv (a relative error of 4.5%) even for a 50% reduction but failed to assess a more extreme reduction. OSAT was reasonably accurate at 100% reduction, with a −4 ppbv (−7%) bias, but was less accurate at moderate ranges of reduction (∼50-70%). For emissions from Korea and Japan, HDDM captured the nonlinear response at all receptor sites and at all reduction levels to within 1% in all but one case; however, the bias of OSAT increased with the increasing reduction of emissions. One possible reason for this is that OSAT does not account for NO titration. To address this, a term for potential ozone (PO; O3and NO2 together) was introduced. Using of PO instead of O3 improved the performance of OSAT, especially for emissions reductions from Korea and Japan. The proposed approach with PO refined the OSAT results and did not degrade HDDM performance.

Original languageEnglish
Pages (from-to)331-358
Number of pages28
JournalJournal of Geophysical Research
Issue number1
Publication statusPublished - Jan 16 2015

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology


Dive into the research topics of 'Comprehensive study of emission source contributions for tropospheric ozone formation over East Asia'. Together they form a unique fingerprint.

Cite this