TY - JOUR
T1 - Comprehensive study of Al-induced layer-exchange growth for orientation-controlled Si crystals on SiO2 substrates
AU - Kurosawa, Masashi
AU - Sadoh, Taizoh
AU - Miyao, Masanobu
N1 - Publisher Copyright:
© 2014 AIP Publishing LLC.
PY - 2014/11/7
Y1 - 2014/11/7
N2 - Orientation-controlled crystalline Si films on insulating substrates are strongly required to achieve high-performance thin-film devices for next-generation electronics. We have comprehensively investigated the layer-exchange kinetics of Al-induced crystallization (AIC) in stacked structures, i.e., amorphous-Si/Al-oxide/Al/SiO2-substrates, as a function of the air-exposure time of Al surfaces (tair: 0-24 h) to form Al-oxide interface-layers, the thickness of Al and Si layers (dAl, dSi: 50-200 nm), the annealing temperature (450-500°C), and the annealing time (0-50 h). It has been clarified that longer tair (>60 min) and/or thinner dAl and dSi (<50 nm) lead to the (111) oriented growth; in contrast, shorter tair (<60 min) and/or thicker dAl and dSi (>100 nm) lead to the (100) oriented growth. No correlation between the annealing temperature and the crystal orientation is observed. Detailed analysis reveals that the layer-exchange kinetics are dominated by "supply-limited" processing, i.e., diffusion of Si atoms into Al layers through Al-oxide layer. Based on the growth rate dependent Si concentration profiles in Al layers, and the free-energy of Si at Al-oxide/Al or Al/SiO2 interfaces, a comprehensive model for layer-exchange growth is proposed. This well explains the experimental results of not only Si-AIC but also another material system such as gold-induced crystallization of Ge. In this way, a growth technique achieving the orientation-controlled Si crystals on insulating substrates is established from both technological and scientific points of view.
AB - Orientation-controlled crystalline Si films on insulating substrates are strongly required to achieve high-performance thin-film devices for next-generation electronics. We have comprehensively investigated the layer-exchange kinetics of Al-induced crystallization (AIC) in stacked structures, i.e., amorphous-Si/Al-oxide/Al/SiO2-substrates, as a function of the air-exposure time of Al surfaces (tair: 0-24 h) to form Al-oxide interface-layers, the thickness of Al and Si layers (dAl, dSi: 50-200 nm), the annealing temperature (450-500°C), and the annealing time (0-50 h). It has been clarified that longer tair (>60 min) and/or thinner dAl and dSi (<50 nm) lead to the (111) oriented growth; in contrast, shorter tair (<60 min) and/or thicker dAl and dSi (>100 nm) lead to the (100) oriented growth. No correlation between the annealing temperature and the crystal orientation is observed. Detailed analysis reveals that the layer-exchange kinetics are dominated by "supply-limited" processing, i.e., diffusion of Si atoms into Al layers through Al-oxide layer. Based on the growth rate dependent Si concentration profiles in Al layers, and the free-energy of Si at Al-oxide/Al or Al/SiO2 interfaces, a comprehensive model for layer-exchange growth is proposed. This well explains the experimental results of not only Si-AIC but also another material system such as gold-induced crystallization of Ge. In this way, a growth technique achieving the orientation-controlled Si crystals on insulating substrates is established from both technological and scientific points of view.
UR - http://www.scopus.com/inward/record.url?scp=84910027913&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84910027913&partnerID=8YFLogxK
U2 - 10.1063/1.4901262
DO - 10.1063/1.4901262
M3 - Article
AN - SCOPUS:84910027913
SN - 0021-8979
VL - 116
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 17
M1 - 173510
ER -