TY - JOUR
T1 - Compliant design of artificial graft
T2 - Compliance determination by new digital X-ray imaging system-based method
AU - Sonoda, Hiromichi
AU - Urayama, Shin Ichi
AU - Takamizawa, Keiichi
AU - Nakayama, Yasuhide
AU - Uyama, Chikao
AU - Yasui, Hisataka
AU - Matsuda, Takehisa
PY - 2002
Y1 - 2002
N2 - The development of an artificial graft requires formulation of biomechanical design criteria. The compliance of artifical grafts, based on the intraluminal pressureinternal diameter (Pi-Di) relationship, was measured by a novel method using a digital X-ray imaging system coupled with an edge detection algorithm and a pressure transducer. The Pi-Di values were obtained from digital angiographic images under continuous inflation of a canine femoral artery anastomosed with an expanded poly(tetrafluoroethylene) (ePTFE) vascular graft as a model vessel with a pressurized contrast medium. The Di at Pi using an NIH Image software specially programmed for the entropy filter method, which enables the detection of the edge of the vessel phantoms of the images, was determined. The Pi-Di relationships showed a "J-shape" curve for the artery, a steeper line with a very low pressure-dependent distensibility for the ePTFE graft, and an intermediate curve for the anastomosis protion. The two indices for the vessel compliance, the stiffness parameter (β value) and the diameter compliance (Cd), both of which were calculated from the Pi-Di relationships, were 10.6 and 6.8%/mmHg × 10-2 for the artery, 164 and 0.51%/mmHg × 10-2 for the ePTFE, and 14.4 and 5.5%/mmHg × 10-2 for the anastomosis portion, respectively. This method can measure compliance at any portions of the sampling vessel in a single experiment on a real-time basis with very high accuracy, compared with conventional methods, and even in cases of intimal thickening and/or connective tissues-adhered vessels, and may serve to provide information on compliant design criteria of artificial and tissue-engineered graft.
AB - The development of an artificial graft requires formulation of biomechanical design criteria. The compliance of artifical grafts, based on the intraluminal pressureinternal diameter (Pi-Di) relationship, was measured by a novel method using a digital X-ray imaging system coupled with an edge detection algorithm and a pressure transducer. The Pi-Di values were obtained from digital angiographic images under continuous inflation of a canine femoral artery anastomosed with an expanded poly(tetrafluoroethylene) (ePTFE) vascular graft as a model vessel with a pressurized contrast medium. The Di at Pi using an NIH Image software specially programmed for the entropy filter method, which enables the detection of the edge of the vessel phantoms of the images, was determined. The Pi-Di relationships showed a "J-shape" curve for the artery, a steeper line with a very low pressure-dependent distensibility for the ePTFE graft, and an intermediate curve for the anastomosis protion. The two indices for the vessel compliance, the stiffness parameter (β value) and the diameter compliance (Cd), both of which were calculated from the Pi-Di relationships, were 10.6 and 6.8%/mmHg × 10-2 for the artery, 164 and 0.51%/mmHg × 10-2 for the ePTFE, and 14.4 and 5.5%/mmHg × 10-2 for the anastomosis portion, respectively. This method can measure compliance at any portions of the sampling vessel in a single experiment on a real-time basis with very high accuracy, compared with conventional methods, and even in cases of intimal thickening and/or connective tissues-adhered vessels, and may serve to provide information on compliant design criteria of artificial and tissue-engineered graft.
UR - http://www.scopus.com/inward/record.url?scp=0036161855&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036161855&partnerID=8YFLogxK
U2 - 10.1002/jbm.10055
DO - 10.1002/jbm.10055
M3 - Article
C2 - 11835175
AN - SCOPUS:0036161855
SN - 0021-9304
VL - 60
SP - 191
EP - 195
JO - Journal of Biomedical Materials Research
JF - Journal of Biomedical Materials Research
IS - 1
ER -