Complex structure of a proto-brown dwarf

B. Riaz, M. N. Machida

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


We present ALMA 12CO (2-1), 13CO (2-1), C18O (2-1) molecular line observations of a very young proto-brown dwarf system, ISO-OPH 200. We have conducted physical+chemical modelling of the complex internal structure for this system using the core collapse simulations for brown dwarf formation. The model at an age of ∼6000 yr can provide a good fit to the observed kinematics, spectra, and reproduce the complex structures seen in the moment maps. Results from modelling indicate that 12CO emission is tracing an extended (∼1000au) molecular outflow and a bright shock knot, 13CO is tracing the outer (∼1000 au) envelope/pseudo-disc, and C18O is tracing the inner (∼500 au) pseudo-disc. The source size of ∼8.6 au measured in the 873-μm image is comparable to the inner Keplerian disc size predicted by the model. A 3D model structure of ISO-OPH 200 suggests that this system is viewed partially through a wide outflow cavity resulting in a direct view of the outflow and a partial view of the envelope/pseudo-disc. We have argued that ISO-OPH 200 has been mis-classified as a Class Flat object due to the unusual orientation. The various signatures of this system, notably, the young ∼616-yr outflow dynamical age and high outflow rate (∼1 × 10-7 M⊙ yr-1), silicate absorption in the 10-$\rm{\mu m}$ mid-infrared spectrum, pristine ISM-like dust in the envelope/disc, comparable sizes of the extended envelope and outflow, indicate that ISO-OPH 200 is an early Class 0 stage system formed in a star-like mechanism via gravitational collapse of a very low mass core.

Original languageEnglish
Pages (from-to)6049-6066
Number of pages18
JournalMonthly Notices of the Royal Astronomical Society
Issue number4
Publication statusPublished - Jul 1 2021

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Complex structure of a proto-brown dwarf'. Together they form a unique fingerprint.

Cite this