TY - JOUR
T1 - Comparison of diagnostic performance of radiologist- and AI-based assessments of T2-FLAIR mismatch sign and quantitative assessment using synthetic MRI in the differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant and 1p/19q-codeleted
AU - Kikuchi, Kazufumi
AU - Togao, Osamu
AU - Yamashita, Koji
AU - Momosaka, Daichi
AU - Kikuchi, Yoshitomo
AU - Kuga, Daisuke
AU - sangatsuda, yuhei
AU - Fujioka, Yutaka
AU - Narutomi, Fumiya
AU - Obara, Makoto
AU - Yoshimoto, Koji
AU - Ishigami, Kousei
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/3
Y1 - 2024/3
N2 - Purpose: This study aimed to compare assessments by radiologists, artificial intelligence (AI), and quantitative measurement using synthetic MRI (SyMRI) for differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, and IDH-mutant and 1p/19q-codeleted and to identify the superior method. Methods: Thirty-three cases (men, 14; women, 19) comprising 19 astrocytomas and 14 oligodendrogliomas were evaluated. Four radiologists independently evaluated the presence of the T2-FLAIR mismatch sign. A 3D convolutional neural network (CNN) model was trained using 50 patients outside the test group (28 astrocytomas and 22 oligodendrogliomas) and transferred to evaluate the T2-FLAIR mismatch lesions in the test group. If the CNN labeled more than 50% of the T2-prolonged lesion area, the result was considered positive. The T1/T2-relaxation times and proton density (PD) derived from SyMRI were measured in both gliomas. Each quantitative parameter (T1, T2, and PD) was compared between gliomas using the Mann–Whitney U-test. Receiver-operating characteristic analysis was used to evaluate the diagnostic performance. Results: The mean sensitivity, specificity, and area under the curve (AUC) of radiologists vs. AI were 76.3% vs. 94.7%; 100% vs. 92.9%; and 0.880 vs. 0.938, respectively. The two types of diffuse gliomas could be differentiated using a cutoff value of 2290/128 ms for a combined 90th percentile of T1 and 10th percentile of T2 relaxation times with 94.4/100% sensitivity/specificity with an AUC of 0.981. Conclusion: Compared to the radiologists’ assessment using the T2-FLAIR mismatch sign, the AI and the SyMRI assessments increased both sensitivity and objectivity, resulting in improved diagnostic performance in differentiating gliomas.
AB - Purpose: This study aimed to compare assessments by radiologists, artificial intelligence (AI), and quantitative measurement using synthetic MRI (SyMRI) for differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, and IDH-mutant and 1p/19q-codeleted and to identify the superior method. Methods: Thirty-three cases (men, 14; women, 19) comprising 19 astrocytomas and 14 oligodendrogliomas were evaluated. Four radiologists independently evaluated the presence of the T2-FLAIR mismatch sign. A 3D convolutional neural network (CNN) model was trained using 50 patients outside the test group (28 astrocytomas and 22 oligodendrogliomas) and transferred to evaluate the T2-FLAIR mismatch lesions in the test group. If the CNN labeled more than 50% of the T2-prolonged lesion area, the result was considered positive. The T1/T2-relaxation times and proton density (PD) derived from SyMRI were measured in both gliomas. Each quantitative parameter (T1, T2, and PD) was compared between gliomas using the Mann–Whitney U-test. Receiver-operating characteristic analysis was used to evaluate the diagnostic performance. Results: The mean sensitivity, specificity, and area under the curve (AUC) of radiologists vs. AI were 76.3% vs. 94.7%; 100% vs. 92.9%; and 0.880 vs. 0.938, respectively. The two types of diffuse gliomas could be differentiated using a cutoff value of 2290/128 ms for a combined 90th percentile of T1 and 10th percentile of T2 relaxation times with 94.4/100% sensitivity/specificity with an AUC of 0.981. Conclusion: Compared to the radiologists’ assessment using the T2-FLAIR mismatch sign, the AI and the SyMRI assessments increased both sensitivity and objectivity, resulting in improved diagnostic performance in differentiating gliomas.
KW - Artificial intelligence
KW - Convolutional neural network
KW - Synthetic MRI
KW - T2-FLAIR mismatch sign
UR - http://www.scopus.com/inward/record.url?scp=85182471609&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85182471609&partnerID=8YFLogxK
U2 - 10.1007/s00234-024-03288-0
DO - 10.1007/s00234-024-03288-0
M3 - Article
C2 - 38224343
AN - SCOPUS:85182471609
SN - 0028-3940
VL - 66
SP - 333
EP - 341
JO - Neuroradiology
JF - Neuroradiology
IS - 3
ER -