TY - GEN
T1 - Comparative study on the pulmonary toxicity of indium hydroxide, indium-tin oxide, and indium oxide following intratracheal instillations into the lungs of rats
AU - Tanaka, Akiyo
AU - Hirata, Miyuki
AU - Matsumura, Nagisa
AU - Koga, Kazunori
AU - Shiratani, Masaharu
AU - Kiyohara, Yutaka
N1 - Publisher Copyright:
© 2015 Materials Research Society.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015
Y1 - 2015
N2 - We studied the pulmonary toxicity of indium hydroxide (In(OH)3), which is produced during a recycling process of indium-tin oxide (ITO), in comparison with that of ITO or indium oxide (In2O3), two raw materials of flat panel displays. One hundred and forty-four male Wistar rats were intratracheally given equivalent doses of 10 mg/kg indium as In(OH)3, ITO, or In2O3particles, twice a week, for a total of 5 times for 2 weeks. Control rats were given distilled water as a vehicle. After 3 weeks, these rats were serially euthanized, and toxicological effects were determined. Body weight gain was significantly suppressed in the In(OH)3-treated rats compared to that in the control group, but not in the ITO-or In2O3-treated rats. Relative lung weights in all the indium-treated groups significantly increased compared to those in the control group throughout the observation period. Furthermore, lung weights in the In(OH)3 group were significantly higher than those in either the ITO or In2O3 group. Blood indium levels in the In(OH)3-treated rats were much higher, 70-to 200-fold, than those in the In2O3- or ITO-treated rats at each time point. Although the lung indium content decreased gradually during the observation periods, the content in the In(OH)3 group was significantly higher than that in either the ITO or In2O3 group. A histopathological analysis revealed foci indicating a slight to severe pulmonary inflammatory response, including exudation to alveolar spaces, were present in all the indium-treated groups. Interstitial fibrotic proliferation was seen only in the In(OH)3-treated rats. The severity of these lesions in the In(OH)3-treated rats was greater than that in either the ITO-or In203-treated rats. The results of our study clearly demonstrated that In(OH)3 particles caused severe pulmonary toxicity when repeated intratracheal instillations were performed in rats. Furthermore, the toxic potency of In(OH)3 in the lung was much higher than that of ITO and In2O3. Accordingly, the toxicity of In(OH)3 particles should be considered in addition to that of ITO and In2O3 particles when indium exposure occurs.
AB - We studied the pulmonary toxicity of indium hydroxide (In(OH)3), which is produced during a recycling process of indium-tin oxide (ITO), in comparison with that of ITO or indium oxide (In2O3), two raw materials of flat panel displays. One hundred and forty-four male Wistar rats were intratracheally given equivalent doses of 10 mg/kg indium as In(OH)3, ITO, or In2O3particles, twice a week, for a total of 5 times for 2 weeks. Control rats were given distilled water as a vehicle. After 3 weeks, these rats were serially euthanized, and toxicological effects were determined. Body weight gain was significantly suppressed in the In(OH)3-treated rats compared to that in the control group, but not in the ITO-or In2O3-treated rats. Relative lung weights in all the indium-treated groups significantly increased compared to those in the control group throughout the observation period. Furthermore, lung weights in the In(OH)3 group were significantly higher than those in either the ITO or In2O3 group. Blood indium levels in the In(OH)3-treated rats were much higher, 70-to 200-fold, than those in the In2O3- or ITO-treated rats at each time point. Although the lung indium content decreased gradually during the observation periods, the content in the In(OH)3 group was significantly higher than that in either the ITO or In2O3 group. A histopathological analysis revealed foci indicating a slight to severe pulmonary inflammatory response, including exudation to alveolar spaces, were present in all the indium-treated groups. Interstitial fibrotic proliferation was seen only in the In(OH)3-treated rats. The severity of these lesions in the In(OH)3-treated rats was greater than that in either the ITO-or In203-treated rats. The results of our study clearly demonstrated that In(OH)3 particles caused severe pulmonary toxicity when repeated intratracheal instillations were performed in rats. Furthermore, the toxic potency of In(OH)3 in the lung was much higher than that of ITO and In2O3. Accordingly, the toxicity of In(OH)3 particles should be considered in addition to that of ITO and In2O3 particles when indium exposure occurs.
UR - http://www.scopus.com/inward/record.url?scp=84938920149&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84938920149&partnerID=8YFLogxK
U2 - 10.1557/opl.2015.21
DO - 10.1557/opl.2015.21
M3 - Conference contribution
AN - SCOPUS:84938920149
T3 - Materials Research Society Symposium Proceedings
SP - 8
EP - 13
BT - Plasma Processing and Diagnostics for Life Sciences
A2 - Fisher, E.R.
A2 - Kong, M.
A2 - Weltmann, K.D.
A2 - Shiratani, M.
PB - Materials Research Society
T2 - 2014 MRS Fall Meeting
Y2 - 30 November 2014 through 5 December 2014
ER -