Abstract
The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminum nucleus (μ-e conversion, μ-N → e-N); a lepton flavor-violating process. The experimental sensitivity goal for this process in the Phase-I experiment is 3.1 × 10-15, or 90% upper limit of a branching ratio of 7 × 10-15, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the μ-e conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described.
Original language | English |
---|---|
Article number | 033C01 |
Journal | Progress of Theoretical and Experimental Physics |
Volume | 2020 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 13 2020 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'COMET Phase-I technical design report'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Progress of Theoretical and Experimental Physics, Vol. 2020, No. 3, 033C01, 13.03.2020.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - COMET Phase-I technical design report
AU - Abramishvili, R.
AU - Adamov, G.
AU - Akhmetshin, R. R.
AU - Allin, A.
AU - Angélique, J. C.
AU - Anishchik, V.
AU - Aoki, M.
AU - Aznabayev, D.
AU - Bagaturia, I.
AU - Ban, G.
AU - Ban, Y.
AU - Bauer, D.
AU - Baygarashev, D.
AU - Bondar, A. E.
AU - Cârloganu, C.
AU - Carniol, B.
AU - Chau, T. T.
AU - Chen, J. K.
AU - Chen, S. J.
AU - Cheung, Y. E.
AU - Da Silva, W.
AU - Dauncey, P. D.
AU - Densham, C.
AU - Devidze, G.
AU - Dornan, P.
AU - Drutskoy, A.
AU - Duginov, V.
AU - Eguchi, Y.
AU - Epshteyn, L. B.
AU - Evtoukhovitch, P.
AU - Fayer, S.
AU - Fedotovich, G. V.
AU - Finger, M.
AU - Finger, M.
AU - Fujii, Y.
AU - Fukao, Y.
AU - Gabriel, J. L.
AU - Gay, P.
AU - Gillies, E.
AU - Grigoriev, D. N.
AU - Gritsay, K.
AU - Hai, V. H.
AU - Hamada, E.
AU - Hashim, I. H.
AU - Hashimoto, S.
AU - Hayashi, O.
AU - Hayashi, T.
AU - Hiasa, T.
AU - Ibrahim, Z. A.
AU - Igarashi, Y.
AU - Ignatov, F. V.
AU - Iio, M.
AU - Ishibashi, K.
AU - Issadykov, A.
AU - Itahashi, T.
AU - Jansen, A.
AU - Jiang, X. S.
AU - Jonsson, P.
AU - Kachelhoffer, T.
AU - Kalinnikov, V.
AU - Kaneva, E.
AU - Kapusta, F.
AU - Katayama, H.
AU - Kawagoe, K.
AU - Kawashima, R.
AU - Kazak, N.
AU - Kazanin, V. F.
AU - Kemularia, O.
AU - Khvedelidze, A.
AU - Koike, M.
AU - Kormoll, T.
AU - Kozlov, G. A.
AU - Kozyrev, A. N.
AU - Kravchenko, M.
AU - Krikler, B.
AU - Kumsiashvili, G.
AU - Kuno, Y.
AU - Kuriyama, Y.
AU - Kurochkin, Y.
AU - Kurup, A.
AU - Lagrange, B.
AU - Lai, J.
AU - Lee, M. J.
AU - Li, H. B.
AU - Litchfield, R. P.
AU - Li, W. G.
AU - Loan, T.
AU - Lomidze, D.
AU - Lomidze, I.
AU - Loveridge, P.
AU - Macharashvili, G.
AU - Makida, Y.
AU - Mao, Y. J.
AU - Markin, O.
AU - Matsuda, Y.
AU - Melkadze, A.
AU - Melnik, A.
AU - Mibe, T.
AU - Mihara, S.
AU - Miyamoto, N.
AU - Miyazaki, Y.
AU - Mohamad Idris, F.
AU - Azmi, K. A.Mohamed Kamal
AU - Moiseenko, A.
AU - Moritsu, M.
AU - Mori, Y.
AU - Motoishi, T.
AU - Nakai, H.
AU - Nakai, Y.
AU - Nakamoto, T.
AU - Nakamura, Y.
AU - Nakatsugawa, Y.
AU - Nakazawa, Y.
AU - Nash, J.
AU - Natori, H.
AU - Niess, V.
AU - Nioradze, M.
AU - Nishiguchi, H.
AU - Noguchi, K.
AU - Numao, T.
AU - O'dell, J.
AU - Ogitsu, T.
AU - Ohta, S.
AU - Oishi, K.
AU - Okamoto, K.
AU - Okamura, T.
AU - Okinaka, K.
AU - Omori, C.
AU - Ota, T.
AU - Pasternak, J.
AU - Paulau, A.
AU - Picters, D.
AU - Ponariadov, V.
AU - Quémener, G.
AU - Ruban, A. A.
AU - Rusinov, V.
AU - Sabirov, B.
AU - Sakamoto, H.
AU - Sarin, P.
AU - Sasaki, K.
AU - Sato, A.
AU - Sato, J.
AU - Semertzidis, Y. K.
AU - Shigyo, N.
AU - Shoukavy, Dz
AU - Slunecka, M.
AU - Stöckinger, D.
AU - Sugano, M.
AU - Tachimoto, T.
AU - Takayanagi, T.
AU - Tanaka, M.
AU - Tang, J.
AU - Tao, C. V.
AU - Teixeira, A. M.
AU - Tevzadze, Y.
AU - Thanh, T.
AU - Tojo, J.
AU - Tolmachev, S. S.
AU - Tomasek, M.
AU - Tomizawa, M.
AU - Toriashvili, T.
AU - Trang, H.
AU - Trekov, I.
AU - Tsamalaidze, Z.
AU - Tsverava, N.
AU - Uchida, T.
AU - Uchida, Y.
AU - Ueno, K.
AU - Velicheva, E.
AU - Volkov, A.
AU - Vrba, V.
AU - Abdullah, W. A.T.Wan
AU - Warin-Charpentier, P.
AU - Wong, M. L.
AU - Wong, T. S.
AU - Wu, C.
AU - Xing, T. Y.
AU - Yamaguchi, H.
AU - Yamamoto, A.
AU - Yamanaka, M.
AU - Yamane, T.
AU - Yang, Y.
AU - Yano, T.
AU - Yao, W. C.
AU - Yeo, B.
AU - Yoshida, H.
AU - Yoshida, M.
AU - Yoshioka, T.
AU - Yuan, Y.
AU - Yudin, Yu V.
AU - Zdorovets, M. V.
AU - Zhang, J.
AU - Zhang, Y.
AU - Zuber, K.
N1 - Funding Information: We thank KEK and J-PARC, Japan for their support of infrastructure and the operation ofCOMET. Thiswork is supported in part by: the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. 25000004 and 18H05231; JSPS KAKENHI Grant No. JP17H06135; the Belarusian Republican Foundation for Fundamental Research Grant F18R-006; the National Natural Science Foundation of China (NSFC) under Contract Nos. 11335009 and 11475208; the research program of the Institute of High Energy Physics (IHEP) under Contract No. Y3545111U2; the State Key Laboratory of Particle Detection and Electronics of IHEP, China, under Contract No. H929420BTD; supercomputer funding in Sun Yat-Sen University, China; the National Institute of Nuclear Physics and Particle Physics (IN2P3), France; the Shota Rustaveli National Science Foundation of Georgia (SRNSFG), grant No. DI-18-293; a Deutsche Forschungsgemeinschaft grant STO 876/7-1 of Germany; the Joint Institute for Nuclear Research (JINR), project COMET #1134; the Institute for Basic Science (IBS) of the Republic of Korea under Project No. IBS-R017-D1-2018-a00; the Ministry of Education and Science of the Russian Federation and by the Russian Fund for Basic Research grants: 17-02-01073, 18-52-00004; the Science and Technology Facilities Council, UK; the JSPS London Short Term Predoctoral Fellowship program, a Daiwa Anglo-Japanese Foundation Small Grant; and a Royal Society International Joint Projects Grant. Crucial computing support from all partners is gratefully acknowledged, in particular from CC-IN2P3, France; GridPP, UK; andYandex Data Factory, Russia, which also contributed expertise on machine learning methods. Funding Information: We thank KEK and J-PARC, Japan for their support of infrastructure and the operation of COMET. This work is supported in part by: the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. 25000004 and 18H05231; JSPS KAKENHI Grant No. JP17H06135; the Belarusian Republican Foundation for Fundamental Research Grant F18R-006; the National Natural Science Foundation of China (NSFC) under Contract Nos. 11335009 and 11475208; the research program of the Institute of High Energy Physics (IHEP) under Contract No. Y3545111U2; the State Key Laboratory of Particle Detection and Electronics of IHEP, China, under Contract No. H929420BTD; supercomputer funding in Sun Yat-Sen University, China; the National Institute of Nuclear Physics and Particle Physics (IN2P3), France; the Shota Rustaveli National Science Foundation of Georgia (SRNSFG), grant No. DI-18-293; a Deutsche Forschungsgemeinschaft grant STO 876/7-1 of Germany; the Joint Institute for Nuclear Research (JINR), project COMET #1134; the Institute for Basic Science (IBS) of the Republic of Korea under Project No. IBS-R017-D1-2018-a00; the Ministry of Education and Science of the Russian Federation and by the Russian Fund for Basic Research grants: 17-02-01073, 18-52-00004; the Science and Technology Facilities Council, UK; the JSPS London Short Term Predoctoral Fellowship program, a Daiwa Anglo-Japanese Foundation Small Grant; and a Royal Society International Joint Projects Grant. Crucial computing support from all partners is gratefully acknowledged, in particular from CC-IN2P3, France; GridPP, UK; and Yandex Data Factory, Russia, which also contributed expertise on machine learning methods. Funding Information: and signal discrimination are performed by the ASD (amplifier shaper discriminator) chip9, and the amplified signal is then digitized by a DRS4 chip [76]. The digitized waveform data, correction data, and relevant metadata are then sent out via an optical fiber. The FPGA also has other input/output lines for triggering and JTAG connections. Development of the ROESTI board is supported by the KEK Electronics Group and the Open Source Consortium of Instrumentation (OpenIt). Publisher Copyright: © 2020 The Author(s).
PY - 2020/3/13
Y1 - 2020/3/13
N2 - The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminum nucleus (μ-e conversion, μ-N → e-N); a lepton flavor-violating process. The experimental sensitivity goal for this process in the Phase-I experiment is 3.1 × 10-15, or 90% upper limit of a branching ratio of 7 × 10-15, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the μ-e conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described.
AB - The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminum nucleus (μ-e conversion, μ-N → e-N); a lepton flavor-violating process. The experimental sensitivity goal for this process in the Phase-I experiment is 3.1 × 10-15, or 90% upper limit of a branching ratio of 7 × 10-15, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the μ-e conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described.
UR - http://www.scopus.com/inward/record.url?scp=85082198127&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082198127&partnerID=8YFLogxK
U2 - 10.1093/ptep/ptz125
DO - 10.1093/ptep/ptz125
M3 - Article
AN - SCOPUS:85082198127
SN - 2050-3911
VL - 2020
JO - Progress of Theoretical and Experimental Physics
JF - Progress of Theoretical and Experimental Physics
IS - 3
M1 - 033C01
ER -