TY - JOUR
T1 - Combination of large-volume sample stacking with an electroosmotic flow pump with field-amplified sample injection on cross-channel chips
AU - Kitagawa, Fumihiko
AU - Ishiguro, Tatsuya
AU - Tateyama, Misaki
AU - Nukatsuka, Isoshi
AU - Sueyoshi, Kenji
AU - Kawai, Takayuki
AU - Otsuka, Koji
N1 - Funding Information:
This work was supported in part by the Grant-in-Aid for Scientific Research (C) (No. 24550090 and 15K05527) from the Japan Society for the Promotion of Science (JSPS). This research was also supported by SENTAN,JST.
Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2017/8
Y1 - 2017/8
N2 - A combination of two online sample concentration techniques, large-volume sample stacking with an electroosmotic flow (EOF) pump (LVSEP) and field-amplified sample injection (FASI), was investigated in microchip electrophoresis (MCE) to achieve highly sensitive analysis. By applying reversed-polarity voltages on a cross-channel microchip, anionic analytes injected throughout a microchannel were first concentrated on the basis of LVSEP, followed by the electrokinetic stacking injection of the analytes from a sample reservoir by the FASI mechanism. As well as the voltage application, a pressure was also applied to the sample reservoir in LVSEP-FASI. The applied pressure generated a counter-flow against the EOF to reduce the migration velocity of the stacked analytes, especially around the cross section of the microchannel, which facilitated the FASI concentration. At the hydrodynamic pressure of 15 Pa, 4520-fold sensitivity increase was obtained in the LVSEP-FASI analysis of a standard dye, which was 33-times higher than that obtained with a normal LVSEP. Furthermore, the use of the sharper channel was effective for enhancing the sensitivity, e.g., 29 100-fold sensitivity increase was achieved with the 75-μm wide channel. The developed method was applied to the chiral analysis of amino acids in MCE, resulting in the sensitivity enhancement factor of 2920 for the separated d-leucine.
AB - A combination of two online sample concentration techniques, large-volume sample stacking with an electroosmotic flow (EOF) pump (LVSEP) and field-amplified sample injection (FASI), was investigated in microchip electrophoresis (MCE) to achieve highly sensitive analysis. By applying reversed-polarity voltages on a cross-channel microchip, anionic analytes injected throughout a microchannel were first concentrated on the basis of LVSEP, followed by the electrokinetic stacking injection of the analytes from a sample reservoir by the FASI mechanism. As well as the voltage application, a pressure was also applied to the sample reservoir in LVSEP-FASI. The applied pressure generated a counter-flow against the EOF to reduce the migration velocity of the stacked analytes, especially around the cross section of the microchannel, which facilitated the FASI concentration. At the hydrodynamic pressure of 15 Pa, 4520-fold sensitivity increase was obtained in the LVSEP-FASI analysis of a standard dye, which was 33-times higher than that obtained with a normal LVSEP. Furthermore, the use of the sharper channel was effective for enhancing the sensitivity, e.g., 29 100-fold sensitivity increase was achieved with the 75-μm wide channel. The developed method was applied to the chiral analysis of amino acids in MCE, resulting in the sensitivity enhancement factor of 2920 for the separated d-leucine.
UR - http://www.scopus.com/inward/record.url?scp=85019913598&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019913598&partnerID=8YFLogxK
U2 - 10.1002/elps.201700155
DO - 10.1002/elps.201700155
M3 - Article
C2 - 28474737
AN - SCOPUS:85019913598
SN - 0173-0835
VL - 38
SP - 2075
EP - 2080
JO - ELECTROPHORESIS
JF - ELECTROPHORESIS
IS - 16
ER -