TY - JOUR
T1 - Color screening potential at finite density in two-flavor lattice QCD with Wilson fermions
AU - Takahashi, Junichi
AU - Nagata, Keitaro
AU - Saito, Takuya
AU - Nakamura, Atsushi
AU - Sasaki, Takahiro
AU - Kouno, Hiroaki
AU - Yahiro, Masanobu
PY - 2013/12/3
Y1 - 2013/12/3
N2 - We investigate the chemical-potential (μ) dependence of static-quark free energies in both the real and imaginary μ regions, performing lattice QCD simulations at imaginary μ and extrapolating the results to the real-μ region with analytic continuation. Lattice QCD calculations are done on a 163×4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group-improved Iwasaki gauge action. Static-quark potentials are evaluated from the Polyakov-loop correlation functions in the deconfinement phase. To perform the analytic continuation, the potential calculated at imaginary μ=iμI is expanded into a Taylor expansion series of iμI/T up to fourth order and the pure imaginary variable iμI/T is replaced by the real one μR/T. At real μ, the fourth-order term sizably weakens the μ dependence of the potential. At long distance, all of the color-singlet and -nonsinglet potentials tend to twice the single-quark free energy, indicating that the interactions between static quarks are fully color screened for finite μ. For both real and imaginary μ, the color-singlet qq̄ and the color-antitriplet qq interactions are attractive, whereas the color-octet qq̄ and the color-sextet qq interactions are repulsive. The attractive interactions have a stronger μ/T dependence than the repulsive interactions. The color-Debye screening mass is extracted from the color-singlet potential at imaginary μ, and the mass is extrapolated to real μ by analytic continuation. The screening mass thus obtained has a stronger μ dependence than the prediction of hard-thermal-loop perturbation theory at both real and imaginary μ.
AB - We investigate the chemical-potential (μ) dependence of static-quark free energies in both the real and imaginary μ regions, performing lattice QCD simulations at imaginary μ and extrapolating the results to the real-μ region with analytic continuation. Lattice QCD calculations are done on a 163×4 lattice with the clover-improved two-flavor Wilson fermion action and the renormalization-group-improved Iwasaki gauge action. Static-quark potentials are evaluated from the Polyakov-loop correlation functions in the deconfinement phase. To perform the analytic continuation, the potential calculated at imaginary μ=iμI is expanded into a Taylor expansion series of iμI/T up to fourth order and the pure imaginary variable iμI/T is replaced by the real one μR/T. At real μ, the fourth-order term sizably weakens the μ dependence of the potential. At long distance, all of the color-singlet and -nonsinglet potentials tend to twice the single-quark free energy, indicating that the interactions between static quarks are fully color screened for finite μ. For both real and imaginary μ, the color-singlet qq̄ and the color-antitriplet qq interactions are attractive, whereas the color-octet qq̄ and the color-sextet qq interactions are repulsive. The attractive interactions have a stronger μ/T dependence than the repulsive interactions. The color-Debye screening mass is extracted from the color-singlet potential at imaginary μ, and the mass is extrapolated to real μ by analytic continuation. The screening mass thus obtained has a stronger μ dependence than the prediction of hard-thermal-loop perturbation theory at both real and imaginary μ.
UR - http://www.scopus.com/inward/record.url?scp=84890901465&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84890901465&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.88.114504
DO - 10.1103/PhysRevD.88.114504
M3 - Article
AN - SCOPUS:84890901465
SN - 1550-7998
VL - 88
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 11
M1 - 114504
ER -