TY - JOUR
T1 - Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria
AU - Costantini, Jean Marc
AU - Lelong, Gérald
AU - Guillaumet, Maxime
AU - Weber, William J.
AU - Takaki, Seiya
AU - Yasuda, Kazuhiro
N1 - Publisher Copyright:
© 2016 IOP Publishing Ltd.
PY - 2016/6/20
Y1 - 2016/6/20
N2 - Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (∼0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ∼3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.
AB - Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (∼0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ∼3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.
UR - http://www.scopus.com/inward/record.url?scp=84978427630&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978427630&partnerID=8YFLogxK
U2 - 10.1088/0953-8984/28/32/325901
DO - 10.1088/0953-8984/28/32/325901
M3 - Article
AN - SCOPUS:84978427630
SN - 0953-8984
VL - 28
JO - Journal of Physics Condensed Matter
JF - Journal of Physics Condensed Matter
IS - 32
M1 - 325901
ER -