Cold atmospheric plasma modification of amyloid β

Maho Yagi-Utsumi, Tomohiro Tanaka, Yoko Otsubo, Akira Yamashita, Shinji Yoshimura, Motohiro Nishida, Koichi Kato

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Cold atmospheric plasma (CAP) has attracted much attention in the fields of biotechnology and medicine owing to its potential utility in clinical applications. Recently accumulating evidence has demonstrated that CAP influences protein structures. However, there remain open questions regarding the molecular mechanisms behind the CAP-induced structural perturbations of biomacromolecules. Here, we investigated the potential effects of CAP irradiation of amyloid β (Aβ), an amyloidogenic protein associated with Alzheimer’s disease. Using nuclear magnetic resonance spectroscopy, we observed gradual spectral changes in Aβ after a 10 s CAP pretreatment, which also suppressed its fibril formation, as revealed by thioflavin T assay. As per mass spectrometric analyses, these effects were attributed to selective oxidation of the methionine residue (Met) at position 35. Interestingly, this modification occurred when Aβ was dissolved into a pre-irradiated buffer, indicating that some reactive species oxidize the Met residue. Our results strongly suggest that the H2O2 generated in the solution by CAP irradiation is responsible for Met oxidation, which inhibits Aβ amyloid formation. The findings of the present study provide fundamental insights into plasma biology, giving clues for developing novel applications of CAP.

Original languageEnglish
Article number3116
Pages (from-to)1-9
Number of pages9
JournalInternational journal of molecular sciences
Issue number6
Publication statusPublished - Mar 2 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Cold atmospheric plasma modification of amyloid β'. Together they form a unique fingerprint.

Cite this