TY - JOUR
T1 - Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
AU - J. Allen, Robert
AU - Turnock, Steven
AU - Nabat, Pierre
AU - Neubauer, David
AU - Lohmann, Ulrike
AU - Olivié, Dirk
AU - Oshima, Naga
AU - Michou, Martine
AU - Wu, Tongwen
AU - Zhang, Jie
AU - Takemura, Toshihiko
AU - Schulz, Michael
AU - Tsigaridis, Kostas
AU - E. Bauer, Susanne
AU - Emmons, Louisa
AU - Horowitz, Larry
AU - Naik, Vaishali
AU - Van Noije, Twan
AU - Bergman, Tommi
AU - Lamarque, Jean Francois
AU - Zanis, Prodromos
AU - Tegen, Ina
AU - M. Westervelt, Daniel
AU - Le Sager, Philippe
AU - Good, Peter
AU - Shim, Sungbo
AU - O'Connor, Fiona
AU - Akritidis, Dimitris
AU - K. Georgoulias, Aristeidis
AU - Deushi, Makoto
AU - T. Sentman, Lori
AU - G. John, Jasmin
AU - Fujimori, Shinichiro
AU - J. Collins, William
N1 - Funding Information:
Financial support. Toshihiko Takemura was supported by the supercomputer system of the National Institute for Environmental Studies, Japan, and JSPS KAKENHI (grant no. JP19H05669). David Neubauer acknowledges funding from the European Union’s Horizon 2020 research and innovation programme project FORCeS under grant agreement no. 821205. David Neubauer and Ina Tegen acknowledge a grant for computing resources from the Deutsches Klimarechenzentrum (DKRZ) under project ID 1051. The CESM project is supported primarily by the National Science Foundation. This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under cooperative agreement no. 1852977. Computing and data storage resources, including the Cheyenne supercomputer, were provided by the Computational and Information Systems Laboratory (CISL) at NCAR. Sungbo Shim was supported by the Korea Meteorological Administration Research and Development Program “Development and Assessment of IPCC AR6 Climate Change Scenario” (grant agreement no. 1365003000). Makoto Deushi and Naga Oshima were supported by the Japan Society for the Promotion of Science (grant nos. JP18H03363, JP18H05292, and JP20K04070) and the Environment Research and Technology Development Fund (grant nos. 2-1703, 2-2003, and 5-2001) of the Environmental Restoration and Conservation Agency, Japan. Dirk Olivié and Michael Schulz were supported by the Research Council of Norway (grant nos. 229771, 285003, and 285013), by Notur/NorStore (grant no. NN2345K and NS2345K) and through EU H2020 (grant no. 280060).
Publisher Copyright:
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
PY - 2020/8/17
Y1 - 2020/8/17
N2 - It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015-2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry-climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with weak (SSP3-7.0) versus strong (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2:5) and ozone (O3) decrease by 2:20:32 ugm3 and 4:60:88 ppb, respectively (changes quoted here are for the entire 2015-2055 time period; uncertainty represents the 95% confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0:250:12K and 0:030:012mmd1, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (0:660:20K and 0:030:02mmd1), south Asia (0:470:16K and 0:170:09mmd1), and east Asia (0:460:20K and 0:150:06mmd1). Relatively large warming and wetting of the Arctic also occur at 0:590:36K and 0:040:02mmd1, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals.
AB - It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015-2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry-climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with weak (SSP3-7.0) versus strong (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2:5) and ozone (O3) decrease by 2:20:32 ugm3 and 4:60:88 ppb, respectively (changes quoted here are for the entire 2015-2055 time period; uncertainty represents the 95% confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0:250:12K and 0:030:012mmd1, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (0:660:20K and 0:030:02mmd1), south Asia (0:470:16K and 0:170:09mmd1), and east Asia (0:460:20K and 0:150:06mmd1). Relatively large warming and wetting of the Arctic also occur at 0:590:36K and 0:040:02mmd1, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals.
UR - http://www.scopus.com/inward/record.url?scp=85090030564&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090030564&partnerID=8YFLogxK
U2 - 10.5194/acp-20-9641-2020
DO - 10.5194/acp-20-9641-2020
M3 - Article
AN - SCOPUS:85090030564
SN - 1680-7316
VL - 20
SP - 9641
EP - 9663
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 16
ER -